A047481 Numbers that are congruent to {0, 2, 5, 7} mod 8.
0, 2, 5, 7, 8, 10, 13, 15, 16, 18, 21, 23, 24, 26, 29, 31, 32, 34, 37, 39, 40, 42, 45, 47, 48, 50, 53, 55, 56, 58, 61, 63, 64, 66, 69, 71, 72, 74, 77, 79, 80, 82, 85, 87, 88, 90, 93, 95, 96, 98, 101, 103, 104, 106, 109, 111, 112, 114, 117, 119, 120, 122, 125
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
I:=[0, 2, 5, 7, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 16 2012
-
Maple
A047481:=n->(-1*((-1)^((n-1)/2-(-1)^n/4-1/4)))/2+2*(n-1)+1/2: seq(A047481(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Select[Range[0,300], MemberQ[{0,2,5,7}, Mod[#,8]]&] (* Vincenzo Librandi, May 16 2012 *) LinearRecurrence[{2,-2,2,-1},{0,2,5,7},70] (* Harvey P. Dale, May 28 2017 *)
-
PARI
a(n)=[-1,0,2,5][n%4]+n\4*8 \\ Charles R Greathouse IV, Mar 05 2014
-
PARI
x='x+O('x^100); concat(0, Vec(x^2*(2+x+x^2)/((1-x)^2*(1+x^2)))) \\ Altug Alkan, Dec 24 2015
Formula
From Colin Barker, May 14 2012: (Start)
a(n) = (1/4+i/4)*((-3+3*i)-i*(-i)^n+i^n+(4-4*i)*n) where i=sqrt(-1).
G.f.: x^2*(2+x+x^2)/((1-x)^2*(1+x^2)). (End)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, May 16 2012
a(n) = (-1*((-1)^((n-1)/2-(-1)^n/4-1/4)))/2+2*(n-1)+1/2.
a(n) = cos(n*Pi/2)-1/2*cos((n-1)*Pi/2)-1/2*cos(n*Pi/2)+2*(n-1)+1/2. - Cédric Christian Bernard Gagneux, Mar 05 2014
E.g.f.: (2 - sin(x) + cos(x) + (4*x - 3)*exp(x))/2. - Ilya Gutkovskiy, Jun 02 2016
Sum_{n>=2} (-1)^n/a(n) = (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/16. - Amiram Eldar, Dec 21 2021
Comments