A047431 Numbers that are congruent to {1, 4, 5, 6} mod 8.
1, 4, 5, 6, 9, 12, 13, 14, 17, 20, 21, 22, 25, 28, 29, 30, 33, 36, 37, 38, 41, 44, 45, 46, 49, 52, 53, 54, 57, 60, 61, 62, 65, 68, 69, 70, 73, 76, 77, 78, 81, 84, 85, 86, 89, 92, 93, 94, 97, 100, 101, 102, 105, 108, 109, 110, 113, 116, 117, 118, 121, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [1, 4, 5, 6]]; // Wesley Ivan Hurt, May 30 2016
-
Maple
A047431:=n->(4*n-2-(-I)^n-I^n)/2: seq(A047431(n), n=1..100); # Wesley Ivan Hurt, May 30 2016
-
Mathematica
Table[(4n-2-(-I)^n-I^n)/2, {n, 80}] (* Wesley Ivan Hurt, May 30 2016 *) LinearRecurrence[{2,-2,2,-1},{1,4,5,6},70] (* Harvey P. Dale, Dec 04 2018 *)
-
Sage
[lucas_number1(n,0,1)+2*n+1 for n in range(0,56)] # Zerinvary Lajos, Jul 06 2008
Formula
G.f.: x*(1+2*x-x^2+2*x^3)/((x^2+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = (-2-(-i)^n-i^n+4n)/2 where i=sqrt(-1). - Colin Barker, Jun 06 2012
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
E.g.f.: 2 - cos(x) - (1 - 2*x)*exp(x). - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/16 + 3*log(2)/8. - Amiram Eldar, Dec 24 2021