A047451 Numbers that are congruent to {0, 6} mod 8.
0, 6, 8, 14, 16, 22, 24, 30, 32, 38, 40, 46, 48, 54, 56, 62, 64, 70, 72, 78, 80, 86, 88, 94, 96, 102, 104, 110, 112, 118, 120, 126, 128, 134, 136, 142, 144, 150, 152, 158, 160, 166, 168, 174, 176, 182, 184, 190, 192, 198, 200, 206, 208, 214, 216, 222, 224, 230
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Array[8 # + {0, 6} &, 29, 0] // Flatten (* or *) Rest@ CoefficientList[Series[2 x^2*(3 + x)/((1 + x) (x - 1)^2), {x, 0, 58}], x] (* Michael De Vlieger, Nov 18 2019 *) LinearRecurrence[{1,1,-1},{0,6,8},80] (* Harvey P. Dale, Apr 09 2022 *)
-
PARI
forstep(n=0,200,[6,2],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
PARI
a(n) = 4*n - 3 + (-1)^n; \\ David Lovler, Jul 25 2022
Formula
a(n) = 8*n - a(n-1) - 10 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 3 + (-1)^n.
G.f.: 2*x^2*(3+x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=6 and b(k)=2^(k+2) for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((8/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/8 - Pi/16. - Amiram Eldar, Dec 18 2021
E.g.f.: (4*x + 1)*exp(x) - exp(-x) = 4*x*exp(x) + 2*sinh(x). - David Lovler, Aug 02 2022
Comments