A047457 Numbers that are congruent to {3, 4} mod 8.
3, 4, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, 60, 67, 68, 75, 76, 83, 84, 91, 92, 99, 100, 107, 108, 115, 116, 123, 124, 131, 132, 139, 140, 147, 148, 155, 156, 163, 164, 171, 172, 179, 180, 187, 188, 195, 196, 203, 204, 211, 212, 219, 220, 227
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
A047457:=n->(-5 - 3*(-1)^n + 8*n)/2; seq(A047457(n), n=1..100); # Wesley Ivan Hurt, Mar 04 2014
-
Mathematica
Table[(-5 - 3*(-1)^n + 8*n)/2, {n, 100}] (* Wesley Ivan Hurt, Mar 04 2014 *) Flatten[Table[8n + {3, 4}, {n, 0, 29}]] (* Alonso del Arte, Mar 04 2014 *)
Formula
a(n) = 8*n - a(n-1) - 9 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3+x+4*x^2)/((1-x)^2*(1+x)). - Colin Barker, May 13 2012
a(n) = (-5 - 3*(-1)^n + 8*n)/2. - Colin Barker, May 14 2012
A000120(a(n)-1) = A000120(a(n)+1) = A063787(n). - Ilya Lopatin and Juri-Stepan Gerasimov, Feb 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/4 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
Comments