A047497 Numbers that are congruent to {1, 2, 4, 5, 7} mod 8.
1, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A047399 (complement).
Programs
-
Magma
I:=[1,2,4,5,7]; [n le 5 select I[n] else Self(n-5) + 8 : n in [1..70]]; // Vincenzo Librandi, Jun 06 2017
-
Maple
seq(floor((8*n-3)/5),n=1..56); # Gary Detlefs, Mar 07 2010
-
Mathematica
Select[Range[120],MemberQ[{1,2,4,5,7},Mod[#,8]]&] (* or *) LinearRecurrence[ {1,0,0,0,1,-1},{1,2,4,5,7,9},100] (* Harvey P. Dale, Jun 05 2017 *) Table[8 n + {1, 2, 4, 5, 7}, {n, 0, 20}]//Flatten (* Vincenzo Librandi, Jun 06 2017 *)
-
PARI
for (n=1, 80, print1((8*n-3)\5, ", ")) \\ Michel Marcus, Sep 10 2014
Formula
a(n) = floor((8n-3)/5). [Gary Detlefs, Mar 07 2010]
From R. J. Mathar, Mar 23 2010: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6).
G.f.: x*(1 + x + 2*x^2 + x^3 + 2*x^4 + x^5)/ ((x^4 + x^3 + x^2 + x + 1) * (x-1)^2). (End)