A047513 Numbers that are congruent to {0, 1, 2, 4, 6, 7} mod 8.
0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 84, 86, 87, 88
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0, 1, 2, 4, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047513:=n->(24*n-24-2*sqrt(3)*(cos((1-4*n)*Pi/6)-3*cos((2*n+1)*Pi/6)))/18: seq(A047513(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
-
Mathematica
Select[Range[0, 75], Function[k, Mod[#, 8] == k] /@ Nor[3, 5] &] (* or *) Select[Range[0, 75], Function[k, Floor[k (#/4)^2] == k Floor[(#/4)^2]] /@ Or[2, 3] &] (* Michael De Vlieger, Dec 03 2015 *) Select[Range[0,100], MemberQ[{0,1,2,4,6,7}, Mod[#,8]]&] (* Harvey P. Dale, Apr 26 2016 *) LinearRecurrence[{2, -2, 2, -2, 2, -1}, {0, 1, 2, 4, 6, 7}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
From Chai Wah Wu, May 29 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6), n>6.
G.f.: x^2*(x^2 + 1)^2/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1)). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (24*n-24-2*sqrt(3)*(cos((1-4*n)*Pi/6)-3*cos((2*n+1)*Pi/6)))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-4, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (4-sqrt(2))*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 27 2021
Comments