cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047513 Numbers that are congruent to {0, 1, 2, 4, 6, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 84, 86, 87, 88
Offset: 1

Views

Author

Keywords

Comments

The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4, etc. - Bruno Berselli, Nov 28 2012
Nonnegative m such that floor(k*(m/4)^2) = k*floor((m/4)^2), where k = 2 or 3. - Bruno Berselli, Dec 03 2015

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 4, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047513:=n->(24*n-24-2*sqrt(3)*(cos((1-4*n)*Pi/6)-3*cos((2*n+1)*Pi/6)))/18: seq(A047513(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Select[Range[0, 75], Function[k, Mod[#, 8] == k] /@ Nor[3, 5] &] (* or *) Select[Range[0, 75], Function[k, Floor[k (#/4)^2] == k Floor[(#/4)^2]] /@ Or[2, 3] &] (* Michael De Vlieger, Dec 03 2015 *)
    Select[Range[0,100], MemberQ[{0,1,2,4,6,7}, Mod[#,8]]&] (* Harvey P. Dale, Apr 26 2016 *)
    LinearRecurrence[{2, -2, 2, -2, 2, -1}, {0, 1, 2, 4, 6, 7}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

From Chai Wah Wu, May 29 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6), n>6.
G.f.: x^2*(x^2 + 1)^2/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1)). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (24*n-24-2*sqrt(3)*(cos((1-4*n)*Pi/6)-3*cos((2*n+1)*Pi/6)))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-4, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (4-sqrt(2))*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 27 2021