cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047585 Numbers that are congruent to {0, 1, 3, 5, 6, 7} mod 8.

Original entry on oeis.org

0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 3, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047585:=n->(12*n - 3*sqrt(3)*sin(Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) - 9)/9: seq(A047585(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,1,3,5,6,7}, Mod[#,8]]&] (* or *) Complement[Range[0,100], Flatten[Range[{2,4},100,8]]] (* Harvey P. Dale, May 01 2012 *)
    CoefficientList[Series[x (x^4 + x^2 + x + 1) / ((x - 1)^2 (x^2 - x + 1) (x^2 + x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 18 2016 *)

Formula

From Chai Wah Wu, Jun 10 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x^2*(x^4 + x^2 + x + 1)/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1 ) ). (End)
a(n) = (12*n - 3*sqrt(3)*sin(Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) - 9)/9. - Ilya Gutkovskiy, Jun 11 2016
a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-3, a(3k-3) = 8k-5, a(3k-4) = 8k-7, a(3k-5) = 8k-8. - Wesley Ivan Hurt, Jun 16 2016
Sum_{n>=2} (-1)^n/a(n) = (3-2*sqrt(2))*Pi/16 + (5-sqrt(2))*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 27 2021

A047428 Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 8.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 3, 4, 5, 6]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047428:=n->(24*n-27-3*cos(n*Pi)-6*cos(n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047428(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 3, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)

Formula

G.f.: x^2*(1+2*x+x^2+x^3+x^4+2*x^5) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-27-3*cos(n*Pi)-6*cos(n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/18.
a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*Pi/16 + log(2)/8 - sqrt(2)*log(99-70*sqrt(2))/16. - Amiram Eldar, Dec 27 2021

A047569 Numbers that are congruent to {0, 1, 4, 5, 6, 7} mod 8.

Original entry on oeis.org

0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A047569:=n->(24*n-15-3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/18: seq(A047569(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 4, 5, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
    LinearRecurrence[{1,0,0,0,0,1,-1},{0,1,4,5,6,7,8},80] (* Harvey P. Dale, Feb 15 2024 *)
  • PARI
    concat(0, Vec(x^2*(1+3*x+x^2+x^3+x^4+x^5)/((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jan 09 2016

Formula

G.f.: x^2*(1+3*x+x^2+x^3+x^4+x^5) / ((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)). - Colin Barker, Jan 09 2016
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-15-3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*Pi/16 + (14-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 27 2021
Showing 1-3 of 3 results.