A047527 Numbers that are congruent to {0, 1, 2, 7} mod 8.
0, 1, 2, 7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 32, 33, 34, 39, 40, 41, 42, 47, 48, 49, 50, 55, 56, 57, 58, 63, 64, 65, 66, 71, 72, 73, 74, 79, 80, 81, 82, 87, 88, 89, 90, 95, 96, 97, 98, 103, 104, 105, 106, 111, 112, 113, 114, 119, 120
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0, 1, 2, 7]]; // Wesley Ivan Hurt, May 21 2016
-
Maple
seq(3*n-4*floor((n-2)/4)-6+(-1)^n, n=1..61); # Gary Detlefs, Mar 27 2010
-
Mathematica
Select[Range[0,200], MemberQ[{0,1,2,7}, Mod[#,8]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,2,7,8}, 200] (* Harvey P. Dale, Sep 05 2014 *)
Formula
a(n) = 3*n-4*floor((n-2)/4)-6+(-1)^n. - Gary Detlefs, Mar 27 2010
G.f.: x^2*(1+x+5*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Sep 05 2014
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = (4n-5+i^(2n)+(1+i)*i^(-n)+(1-i)*i^n)/2 where i = sqrt(-1).
Sum_{n>=2} (-1)^n/a(n) = (5-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/16. - Amiram Eldar, Dec 20 2021
Comments