cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047527 Numbers that are congruent to {0, 1, 2, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 32, 33, 34, 39, 40, 41, 42, 47, 48, 49, 50, 55, 56, 57, 58, 63, 64, 65, 66, 71, 72, 73, 74, 79, 80, 81, 82, 87, 88, 89, 90, 95, 96, 97, 98, 103, 104, 105, 106, 111, 112, 113, 114, 119, 120
Offset: 1

Views

Author

Keywords

Comments

Complement of numbers that are congruent to {3, 4, 5, 6} mod 8 (A047425). - Jaroslav Krizek, Dec 19 2009

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 7]]; // Wesley Ivan Hurt, May 21 2016
  • Maple
    seq(3*n-4*floor((n-2)/4)-6+(-1)^n, n=1..61); # Gary Detlefs, Mar 27 2010
  • Mathematica
    Select[Range[0,200], MemberQ[{0,1,2,7}, Mod[#,8]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,2,7,8}, 200] (* Harvey P. Dale, Sep 05 2014 *)

Formula

a(n) = 3*n-4*floor((n-2)/4)-6+(-1)^n. - Gary Detlefs, Mar 27 2010
G.f.: x^2*(1+x+5*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Sep 05 2014
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = (4n-5+i^(2n)+(1+i)*i^(-n)+(1-i)*i^n)/2 where i = sqrt(-1).
a(2n) = A047522(n), a(2n-1) = A047467(n). (End)
Sum_{n>=2} (-1)^n/a(n) = (5-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/16. - Amiram Eldar, Dec 20 2021