A047573 Numbers that are congruent to {0, 1, 2, 4, 5, 6, 7} mod 8.
0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Crossrefs
Cf. A017101 (8n+3).
Programs
-
Magma
[n+Floor((n-4)/7) : n in [1..100]]; // Wesley Ivan Hurt, Sep 12 2015
-
Magma
I:=[0,1,2,4,5,6,7,8]; [n le 8 select I[n] else Self(n-1) + Self(n-7) - Self(n-8): n in [1..80]]; // Vincenzo Librandi, Sep 13 2015
-
Maple
for n from 0 to 200 do if n mod 8 <> 3 then printf(`%d,`,n) fi: od:
-
Mathematica
Table[n+Floor[(n-4)/7], {n, 100}] (* Wesley Ivan Hurt, Sep 12 2015 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7, 8}, 80] (* Vincenzo Librandi, Sep 13 2015 *) DeleteCases[Range[0,100],?(Mod[#,8]==3&)] (* _Harvey P. Dale, Oct 05 2020 *)
-
Python
def A047573(n): a, b = divmod(n-1,7) return (0,1,2,4,5,6,7)[b]+(a<<3) # Chai Wah Wu, Jan 27 2023
Formula
G.f.: x^2*(x^6+x^5+x^4+x^3+2*x^2+x+1)/((x-1)^2*(x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Jun 22 2012]
From Wesley Ivan Hurt, Sep 12 2015: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
a(n) = n + floor((n-4)/7). (End)
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 8 for n>7.
a(n) = (56*n - 49 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) - 6*((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.
a(7*k) = 8*k-1, a(7*k-1) = 8*k-2, a(7*k-2) = 8*k-3, a(7*k-3) = 8*k-4, a(7*k-4) = 8*k-6, a(7*k-5) = 8*k-7, a(7*k-6) = 8*k-8. (End)
Extensions
More terms from James Sellers, Feb 19 2001
Comments