A047584 Numbers that are congruent to {1, 3, 5, 6, 7} mod 8.
1, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 51, 53, 54, 55, 57, 59, 61, 62, 63, 65, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 99, 101, 102, 103, 105, 107
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A232713.
Programs
-
Mathematica
Select[Range@ 107, Or[OddQ@ Mod[#, 8], Mod[#, 8] == 6] &] (* Michael De Vlieger, Oct 23 2015 *) #+{1,3,5,6,7}&/@(8*Range[0,20])//Flatten (* Harvey P. Dale, May 13 2019 *)
-
PARI
x='x+O('x^100); Vec((1+x)*(1+x+x^2+x^4)/((1-x)^2*(1+x+x^2+x^3+ x^4))) \\ Altug Alkan, Oct 22 2015
Formula
G.f.: (1 + x)*(1 + x + x^2 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). [Bruno Berselli, Dec 11 2013]
From Wesley Ivan Hurt, Dec 30 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (40n - 10 + 3*(n mod 5) + 3*((n+1) mod 5) - 2*((n+2) mod 5) - 2*((n+3) mod 5) - 2*((n+4) mod 5))/25. (End)
Comments