A047618 Numbers that are congruent to {0, 2, 5} mod 8.
0, 2, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 48, 50, 53, 56, 58, 61, 64, 66, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 120, 122, 125, 128, 130, 133, 136, 138, 141, 144, 146, 149, 152, 154, 157, 160, 162
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..3000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 2, 5]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
seq(3*n - floor(n/3) - (n^2 mod 3), n=0..51); # Gary Detlefs, Mar 19 2010
-
Mathematica
LinearRecurrence[{1, 0, 1, -1}, {0, 2, 5, 8}, 62] (* L. Edson Jeffery, Sep 02 2014 *) Table[((8*n-9)+2*Sin[(2*n*Pi)/3]/Sqrt[3])/3, {n, 62}] (* L. Edson Jeffery, Sep 02 2014 *) Table[8 n + {0, 2, 5}, {n, 0, 100}]//Flatten (* Vincenzo Librandi, Jun 11 2016 *)
-
PARI
a(n) = floor(8*(n-1)/3); \\ Michel Marcus, Sep 03 2014
Formula
a(n) = 3*(n - 1) - floor((n - 1)/3) - ((n - 1)^2 % 3). - Gary Detlefs, Mar 19 2010; corrected by L. Edson Jeffery, Sep 02 2014
a(n) = floor(8*(n-1)/3). - Gary Detlefs, Jan 02 2012
G.f.: x^2*(2+3*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Feb 03 2014
Conjecture: a(n)+a(n+1)+a(n+2) = 8*n-1; or a(n) = 8*(n-2)-a(n-1)-a(n-2)-1, n>3, with a(1)=0, a(2)=2, a(3)=5. - L. Edson Jeffery, Sep 02 2014
a(n) = a(n-1)+a(n-3)-a(n-4), n>4, with a(1)=0, a(2)=2, a(3)=5, a(4)=8. - L. Edson Jeffery, Sep 02 2014
a(n) = ((8*n-9)+2*sin((2*n*Pi)/3)/sqrt(3))/3. - L. Edson Jeffery, Sep 02 2014
a(3k) = 8k-3, a(3k-1) = 8k-6, a(3k-2) = 8k-8. - Wesley Ivan Hurt, Jun 10 2016