A047624 Numbers that are congruent to {0, 1, 3, 5} mod 8.
0, 1, 3, 5, 8, 9, 11, 13, 16, 17, 19, 21, 24, 25, 27, 29, 32, 33, 35, 37, 40, 41, 43, 45, 48, 49, 51, 53, 56, 57, 59, 61, 64, 65, 67, 69, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 91, 93, 96, 97, 99, 101, 104, 105, 107, 109, 112, 113, 115, 117, 120, 121, 123
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 3, 5]]; // Wesley Ivan Hurt, Jun 01 2016
-
Maple
A047624:=n->(8*n-11-I^(2*n)+I^(1-n)-I^(1+n))/4: seq(A047624(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Table[(8n-11-I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, Jun 01 2016 *) LinearRecurrence[{1,0,0,1,-1},{0,1,3,5,8},100] (* G. C. Greubel, Jun 01 2016 *)
Formula
From Reinhard Zumkeller, Feb 21 2010: (Start)
a(n+1) - a(n) = A140081(n-1) + 1;
G.f.: x^2*(1+2*x+2*x^2+3*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-11-i^(2*n)+i^(1-n)-i^(1+n))/4 where i=sqrt(-1).
E.g.f.: (6 + sin(x) + (4*x - 5)*sinh(x) + (4*x - 6)*cosh(x))/2. - Ilya Gutkovskiy, Jun 01 2016
Sum_{n>=2} (-1)^n/a(n) = (3-sqrt(2))*Pi/16 + (8-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8. - Amiram Eldar, Dec 20 2021