A047643 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^18 in powers of x.
1, -18, 153, -816, 3042, -8262, 16098, -19278, -1377, 72556, -203184, 339030, -326961, -53244, 940050, -2147916, 2975391, -2293488, -911369, 6616332, -12906162, 15883884, -10936899, -4660974, 28758849, -52660134, 62518248, -44501988, -7465464, 84565242
Offset: 18
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 18..10000
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
Crossrefs
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(18) )); // G. C. Greubel, Sep 07 2023 -
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 18): seq(a(n), n=18..47); # Alois P. Heinz, Feb 07 2021
-
Mathematica
nmax=47; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] -1)^18, {x,0,nmax}], x]//Drop[#, 18] & (* Ilya Gutkovskiy, Feb 07 2021 *) With[{k=18}, Drop[CoefficientList[Series[(QPochhammer[-x]-1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
-
PARI
my(x='x+O('x^35)); Vec((eta(-x)-1)^18) \\ Joerg Arndt, Sep 07 2023
-
SageMath
from sage.modular.etaproducts import qexp_eta m=75; k=18; def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k def A047643_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(k,x) ).list() a=A047643_list(m); a[k:] # G. C. Greubel, Sep 07 2023
Formula
a(n) = [x^n]( QPochhammer(-x) - 1 )^18. - G. C. Greubel, Sep 07 2023
Extensions
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021