A047649
Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^11 in powers of x.
Original entry on oeis.org
1, -11, 55, -165, 319, -352, -44, 1100, -2585, 3542, -2519, -1530, 8085, -14410, 16170, -9460, -6644, 28105, -46145, 50248, -32802, -6193, 57200, -102575, 121968, -100397, 35123, 60390, -158840, 226413, -234344, 168773, -37070, -131175, 290851, -391402
Offset: 11
-
m:=75;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(11) )); // G. C. Greubel, Sep 05 2023
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 11):
seq(a(n), n=11..46); # Alois P. Heinz, Feb 07 2021
-
nmax=46; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^11, {x,0,nmax}], x]//Drop[#, 11] & (* Ilya Gutkovskiy, Feb 07 2021 *)
With[{k=11}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 05 2023 *)
-
my(N=55,x='x+O('x^N)); Vec((eta(-x)-1)^11) \\ Joerg Arndt, Sep 05 2023
-
from sage.modular.etaproducts import qexp_eta
m=75; k=11;
def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
def A047649_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(k,x) ).list()
a=A047649_list(m); a[k:] # G. C. Greubel, Sep 05 2023
A047265
Triangle T(n,k), for n >= 1, 1 <= k <= n, read by rows, giving coefficient of x^n in expansion of (Product_{j>=1} (1-(-x)^j) - 1 )^k.
Original entry on oeis.org
1, -1, 1, 0, -2, 1, 0, 1, -3, 1, -1, 0, 3, -4, 1, 0, -2, -1, 6, -5, 1, -1, 2, -3, -4, 10, -6, 1, 0, -2, 6, -3, -10, 15, -7, 1, 0, 2, -6, 12, 0, -20, 21, -8, 1, 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, -1, 2, -3, -6, 40, -65, 21, 62, -84, 45, -11, 1
Offset: 1
Triangle starts:
1,
-1, 1,
0, -2, 1,
0, 1, -3, 1,
-1, 0, 3, -4, 1,
0, -2, -1, 6, -5, 1,
-1, 2, -3, -4, 10, -6, 1,
0, -2, 6, -3, -10, 15, -7, 1,
0, 2, -6, 12, 0, -20, 21, -8, 1,
0, 1, 6, -16, 19, 9, -35, 28, -9, 1,
0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1,
-1, 2, -3, -6, 40, ...
-
R:=PowerSeriesRing(Integers(), 40);
T:= func< n,k | Coefficient(R!( (-1)^n*(-1 + (&*[1 - x^j: j in [1..n]]) )^k ), n) >;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 07 2023
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 07 2021
-
T[n_, k_]:= SeriesCoefficient[(-1)^n*(Product[(1-x^j), {j,n}] - 1)^k, {x, 0, n}];
Table[T[n, k], {n,12}, {k,n}]//Flatten (* Jean-François Alcover, Dec 05 2013 *)
-
T(n,k) = polcoeff((-1)^n*(Ser(prod(i=1,n,1-x^i)-1)^k), n) \\ Ralf Stephan, Dec 08 2013
-
from sage.combinat.q_analogues import q_pochhammer
P. = PowerSeriesRing(ZZ, 50)
def T(n,k): return P( (-1)^n*(-1 + q_pochhammer(n,x,x) )^k ).list()[n]
flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Sep 07 2023
A047647
Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^22 in powers of x.
Original entry on oeis.org
1, -22, 231, -1540, 7293, -25872, 69971, -140822, 183711, -25102, -634480, 2027804, -3817814, 4439116, -919600, -9829270, 27660479, -44779042, 43632974, -1898820, -92518261, 219961214, -313463842, 267448104, 15757973, -547042056, 1173033400
Offset: 22
-
m:=75;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(22) )); // G. C. Greubel, Sep 05 2023
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 22):
seq(a(n), n=22..48); # Alois P. Heinz, Feb 07 2021
-
nmax=48; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^22, {x, 0, nmax}], x]//Drop[#, 22] & (* Ilya Gutkovskiy, Feb 07 2021 *)
With[{k=22}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 05 2023 *)
-
my(N=55, x='x+O('x^N)); Vec((eta(-x)-1)^22) \\ Michel Marcus, Sep 05 2023
-
from sage.modular.etaproducts import qexp_eta
m=75; k=22;
def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
def A047647_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(k,x) ).list()
a=A047647_list(m); a[k:] # G. C. Greubel, Sep 05 2023
Showing 1-3 of 3 results.
Comments