A047654 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^2 in powers of x.
1, -2, 1, 0, -2, 2, -2, 2, 1, 0, 2, -2, 3, 0, 2, 0, 0, 2, -2, 0, -2, 2, -1, 0, 0, -2, -2, -2, 1, -2, 0, -2, -2, 0, 2, 0, -2, 0, -2, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 1, 2, 0, -2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, -4, 0, 0, 2, 1, -2, 0, -2, 0, 0, 0, 0, 2, -4, 1, 0, 0, -2, -2, -2, -2, 0, 0, -2, 0, 2, -2, 2, -2
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
Programs
-
Magma
m:=120; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^2 )); // G. C. Greubel, Sep 07 2023 -
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 2): seq(a(n), n=2..94); # Alois P. Heinz, Feb 07 2021
-
Mathematica
nmax=94; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^2, {x, 0, nmax}], x]//Drop[#, 2] & (* Ilya Gutkovskiy, Feb 07 2021 *) With[{k=2}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 125}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
-
PARI
seq(n)={Vec((prod(j=1, n, 1-(-x)^j + O(x^n)) - 1)^2)} \\ Andrew Howroyd, Feb 07 2021
-
SageMath
from sage.modular.etaproducts import qexp_eta m=125; k=2; def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k def A047654_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(k,x) ).list() a=A047654_list(m); a[k:] # G. C. Greubel, Sep 07 2023
Formula
a(n) = [x^n]( QPochhammer(-x) - 1 )^2. - G. C. Greubel, Sep 07 2023
Extensions
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021