cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047665 Expansion of (1/sqrt(1-6*x+x^2)-1/(1-x))/2.

Original entry on oeis.org

0, 1, 6, 31, 160, 841, 4494, 24319, 132864, 731281, 4048726, 22523359, 125797984, 704966809, 3961924126, 22321190911, 126027618304, 712917362209, 4039658528934, 22924714957471, 130271906898720, 741188107113961, 4221707080583086, 24070622500965631, 137369104574280960, 784622537295845041
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Main diagonal of square array defined in A047662.
a(n) is the total number of weak plateaus in all Schroeder n-paths. A weak plateau is a subpath of the form UFF..FD where there are 0 or more Fs. For example, a(2)=6 counts the following weak plateaus (in parentheses) in the 6 Schroeder 2-paths: (UFD), U(UD)D, FF, (UD)F, F(UD), (UD)(UD). - David Callan, Aug 16 2006

Crossrefs

Cf. A001850, A002002 (Schroeder paths interpretation).
Cf. A008288 (Delannoy numbers triangle).

Programs

  • Maple
    seq(add(multinomial(n+k,n-k,k,k)/2,k=1..n),n=1..22); # Zerinvary Lajos, Oct 18 2006
    a:=n->add(add(binomial(n,j)*binomial(n,k)*binomial(k,j), j=0..n),k=1..n): seq(a(n)/2, n=1..22); # Zerinvary Lajos, Jun 02 2007
  • Mathematica
    Table[SeriesCoefficient[(1/Sqrt[1-6*x+x^2]-1/(1-x))/2,{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); Vec((1/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ Joerg Arndt, May 04 2013
    
  • Sage
    a = lambda n: (hypergeometric([-n, n+1], [1], -1)-1)/2
    [simplify(a(n)) for n in (1..25)] # Peter Luschny, May 19 2015

Formula

2*a(n)+1 = A001850(n).
a(n)-a(n-1) = A002002(n).
a(n) = Sum_{k=0..n} Sum_{j=0..n} A008288(k, j).
a(n) = Sum_{j=1..n} C(2*j-1, j-1)*C(n+j, 2*j). - Stefan Hollos (stefan(AT)exstrom.com), Jul 21 2004
D-finite with recurrence: n*(2*n-3)*a(n) = (2*n-1)*(7*n-10)*a(n-1) - (2*n-3)*(7*n-4)*a(n-2) + (n-2)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (hyper2F1(-n,n+1,1,-1)-1)/2 = (hyper2F1(-n, -n, 1, 2)-1)/2. - Peter Luschny, May 19 2015
a(n) = Sum_{k=1..n} binomial(n,k)^2 * 2^(k-1). - Ilya Gutkovskiy, Nov 15 2021

Extensions

Prepended 0, set offset to 0 and new name using a comment of Emeric Deutsch from Dec 25 2003 by Peter Luschny, May 20 2015