cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001850 Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).

Original entry on oeis.org

1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
Offset: 0

Views

Author

Keywords

Comments

Number of paths from (0,0) to (n,n) in an n X n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)).
Also the number of ways of aligning two sequences (e.g., of nucleotides or amino acids) of length n, with at most 2*n gaps (-) inserted, so that while unnecessary gappings: - -a a- - are forbidden, both b- and -b are allowed. (If only other of the latter is allowed, then the sequence A000984 gives the number of alignments.) There is an easy bijection from grid walks given by Dickau to such set of alignments (e.g., the straight diagonal corresponds to the perfect alignment with no gaps). - Antti Karttunen, Oct 10 2001
Also main diagonal of array A008288 defined by m(i,1) = m(1,j) = 1, m(i,j) = m(i-1,j-1) + m(i-1,j) + m(i,j-1). - Benoit Cloitre, May 03 2002
So, as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= n from any given point. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 26 2022
a(n) is the number of n-matchings of a comb-like graph with 2*n teeth. Example: a(2) = 13 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has 13 2-matchings: any of the six possible pairs of teeth and {Aa, BC}, {Aa, CD}, {Bb, CD}, {Cc, AB}, {Dd, AB}, {Dd, BC}, {AB, CD}. - Emeric Deutsch, Jul 02 2002
Number of ordered trees with 2*n+1 edges, having root of odd degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
The sum of the first n coefficients of ((1 - x) / (1 - 2*x))^n is a(n-1). - Michael Somos, Sep 28 2003
Row sums of A063007 and A105870. - Paul Barry, Apr 23 2005
The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D =(1,-1), U can have 2 colors and H can have 3 colors. - N-E. Fahssi, Jan 27 2008
Equals row sums of triangle A152250 and INVERT transform of A109980: (1, 2, 8, 36, 172, 852, ...). - Gary W. Adamson, Nov 30 2008
Number of overpartitions in the n X n box (treat a walk of the type in the first comment as an overpartition, by interpreting a NE step as N, E with the part thus created being overlined). - William J. Keith, May 19 2017
Diagonal of rational functions 1/(1 - x - y - x*y), 1/(1 - x - y*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Dimensions of endomorphism algebras End(R^{(n)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023
a(n) is the number of ways to tile a strip of length n with white squares, black squares, and red dominos, where we must have an equal number of white and black squares. - Greg Dresden and Leo Zhang, Jul 11 2025

Examples

			G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
		

References

  • Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Main diagonal of A064861.
Column k=2 of A262809 and A263159.

Programs

  • Maple
    seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006
    seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
  • Mathematica
    f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
    a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
    CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
    Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
    a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
    a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
  • Maxima
    a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
    
  • PARI
    my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
    
  • Python
    # from Nick Hobson.
    def f(a, b):
        if a == 0 or b == 0:
            return 1
        return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
    [f(n, n) for n in range(7)]
    
  • Python
    from gmpy2 import divexact
    A001850 = [1, 3]
    for n in range(2,10**3):
        A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    a = lambda n: hypergeometric([-n, -n], [1], 2)
    [simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014

Formula

a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
a(n) = a(n-1) + 2*A002002(n) = Sum_{j} A063007(n, j). - Henry Bottomley, Jul 02 2001
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
a(n) = A008288(A046092(n)). - Philippe Deléham, Apr 08 2009
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
a(n) = Sum_{k=0..n} C(n+k, 2*k) * C(2*k, k). - Greg Dresden and Leo Zhang, Jul 11 2025

Extensions

New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996

A047662 Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k)=a(n-1,k-1)+a(n-1,k)+a(n,k-1)+1.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 31, 20, 5, 6, 30, 64, 64, 30, 6, 7, 42, 115, 160, 115, 42, 7, 8, 56, 188, 340, 340, 188, 56, 8, 9, 72, 287, 644, 841, 644, 287, 72, 9, 10, 90, 416, 1120, 1826, 1826, 1120, 416, 90, 10, 11, 110, 579, 1824, 3591
Offset: 1

Views

Author

Keywords

Examples

			The array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, ...
3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, ...
4, 20, 64, 160, 340, 644, 1120, 1824, 2820, 4180, 5984, 8320, ...
5, 30, 115, 340, 841, 1826, 3591, 6536, 11181, 18182, 28347, 42652, ...
6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, ...
7, 56, 287, 1120, 3591, 9912, 24319, 54272, 112071, 216952, 397727, 696032, ...
8, 72, 416, 1824, 6536, 20040, 54272, 132864, 299208, 628232, 1242912, 2336672, ...
...
The first few antidiagonals are:
1,
2, 2,
3, 6, 3,
4, 12, 12, 4,
5, 20, 31, 20, 5,
6, 30, 64, 64, 30, 6,
7, 42, 115, 160, 115, 42, 7,
8, 56, 188, 340, 340, 188, 56, 8,
9, 72, 287, 644, 841, 644, 287, 72, 9,
10, 90, 416, 1120, 1826, 1826, 1120, 416, 90, 10,
...
		

Crossrefs

Rows give A037237, 4*A006007, A047661, A047663, A047664, main diagonal is A047665 (see also A001850).
See also A008288, A048776.

Programs

  • Maple
    A047662 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047662(n-1,k-1)+A047662(n,k-1)+A047662(n-1,k)+1; fi; end;
  • Mathematica
    a[n_, 1] := n; a[1, k_] := k; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n-1, k] + a[n, k-1] + 1; Table[ a[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2013 *)

Formula

a(n, k) =(A008288(n, k)-1)/2. Sum of antidiagonals is A048776.

A226994 Number of lattice paths from (0,0) to (n,n) consisting of steps U=(1,1), H=(1,0) and S=(0,1) such that the first step leaving the diagonal (if any) is an H step.

Original entry on oeis.org

1, 2, 7, 32, 161, 842, 4495, 24320, 132865, 731282, 4048727, 22523360, 125797985, 704966810, 3961924127, 22321190912, 126027618305, 712917362210, 4039658528935, 22924714957472, 130271906898721, 741188107113962, 4221707080583087, 24070622500965632
Offset: 0

Views

Author

Alois P. Heinz, Jun 26 2013

Keywords

Comments

a(n) is also the n-th order truncated expansion in x and y of 1/(1-x*y+x+y) evaluated at x=1, y=1 (see Mathematica code). - Benedict W. J. Irwin, Oct 06 2016

Examples

			a(0) = 1: the empty path.
a(1) = 2: HS, U.
a(2) = 7: HHSS, HSHS, HSSH, HSU, HUS, UHS, UU.
		

Crossrefs

Column k=2 of A330942.
Cf. A001850 (unrestricted paths), A006318 (subdiagonal paths), A047665, A182626, A226995, A226996.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(2*n-1)+1,
         ((n-2)*(2*n-1) *a(n-3) -(7*n-4)*(2*n-3) *a(n-2)
          +(2*n-1)*(7*n-10) *a(n-1))/ (n*(2*n-3)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    Table[CoefficientList[Series[1/(1-x*y+x+y), {x, 0, n}, {y, 0, n}], z][[1]] /.x -> 1 /. y -> 1, {n, 0, 10}] (* Benedict W. J. Irwin, Oct 06 2016 *)
  • PARI
    a(n) = 1/2 + pollegendre(n, 3)/2; \\ Michel Marcus, Oct 06 2016

Formula

G.f.: 1/(2-2*x) + 1/(2*sqrt(1-6*x+x^2)).
a(n) = A001850(n) - A047665(n).
a(n) = 1/2 + LegendreP(n, 3)/2. - Benedict W. J. Irwin, Oct 06 2016
a(n) ~ sqrt(3*sqrt(2) + 4) * (3 + 2*sqrt(2))^n / (4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 07 2016
a(n) = Sum_{k=0..n} (-1)^k * A182626(k). - J. Conrad, Apr 08 2018
a(n) = 1 + Sum_{k=1..n} binomial(n,k)^2 * 2^(k-1). - Ilya Gutkovskiy, Nov 15 2021
a(n) = 1 + A047665(n). - Alois P. Heinz, Nov 15 2021

A331277 Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 1, 1, 0, 1, 62, 31, 1, 1, 0, 1, 900, 2649, 160, 1, 1, 0, 1, 16824, 441061, 116360, 841, 1, 1, 0, 1, 384668, 121105865, 231173330, 5364701, 4494, 1, 1, 0, 1, 10398480, 49615422851, 974787170226, 131147294251, 256452714, 24319, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with k edges and no isolated vertices. When n=2 these objects are graphs.

Examples

			Array begins:
====================================================================
n\k | 0 1    2         3              4            5           6
----+---------------------------------------------------------------
  0 | 1 1    0         0              0            0           0 ...
  1 | 1 1    1         1              1            1           1 ...
  2 | 1 1    6        62            900        16824      384668 ...
  3 | 1 1   31      2649         441061    121105865 49615422851 ...
  4 | 1 1  160    116360      231173330 974787170226 ...
  5 | 1 1  841   5364701   131147294251 ...
  6 | 1 1 4494 256452714 78649359753286 ...
  ...
The A(2,2) = 6 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121251, A136245.
Columns k=0..3 are A000012, A000012, A047665, A137219.
The version with nonnegative integer entries is A331278.
The version with not necessarily distinct columns is A330942.
Cf. A262809 (unrestricted version), A331315, A331639.

Programs

  • PARI
    T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j,n), k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n, k) = Sum_{j=0..n*k} binomial(binomial(j,n),k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A330942(n, j).
A331639(n) = Sum_{d|n} A(n/d, d).

A137219 a(n) = (A126086(n) - 3*A001850(n) + 2)/6.

Original entry on oeis.org

1, 62, 2649, 116360, 5364701, 256452714, 12582472897, 629389744448, 31955247002601, 1641724953315062, 85159811841234857, 4452782349569991736, 234393562418967430389, 12409423916979629786322, 660253088667210584565249
Offset: 1

Views

Author

Vladeta Jovovic, Mar 06 2008, Mar 16 2008

Keywords

Crossrefs

Programs

  • Maple
    A126086 := proc(n) local x,y,z ; coeftayl(coeftayl(coeftayl(1/(1-x-y-z-x*y-x*z-y*z-x*y*z),z=0,n),y=0,n),x=0,n) ; end: A001850 := proc(n) local k ; add(binomial(n,k)*binomial(n+k,k),k=0..n) ; end: A137219 := proc(n) (A126086(n)-3*A001850(n)+2)/6 ; end: seq(A137219(n),n=1..30) ; # R. J. Mathar, Apr 01 2008
  • Mathematica
    A126086[n_]:= A126086[n]= Sum[(-1)^k*Binomial[n+k,n]*HypergeometricPFQ[{-k, n+1, n+1}, {1,1}, 1], {k,0,2*n}];
    A001850[n_]:= Hypergeometric2F1[-n, n+1, 1, -1];
    A137219[n_]:= (A126086[n] - 3*A001850[n] + 2)/6;
    Table[A137219[n], {n, 30}] (* G. C. Greubel, Jan 05 2022 *)
  • Sage
    def A137219(n): return round( sum( binomial(binomial(j, n), 3)/2^(j+1) for j in (0..1000) ) )
    [A137219(n) for n in (1..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = Sum_{m >= 0} binomial(binomial(m, n), 3)/2^(m+1).

Extensions

More terms from R. J. Mathar, Apr 01 2008

A137220 a(n) = (A126086(n) + 3*A001850(n) + 2)/6.

Original entry on oeis.org

1, 4, 75, 2712, 116681, 5366384, 256461703, 12582521536, 629390010177, 31955248465164, 1641724961412515, 85159811886281576, 4452782349821587705, 234393562420377364008, 12409423916987553634575, 660253088667255226947072
Offset: 0

Views

Author

Vladeta Jovovic, Mar 06 2008, Mar 16 2008

Keywords

Crossrefs

Column k=3 of A330942.

Programs

  • Maple
    A126086 := proc(n) local x,y,z ; coeftayl(coeftayl(coeftayl(1/(1-x-y-z-x*y-x*z-y*z-x*y*z),z=0,n),y=0,n),x=0,n) ; end: A001850 := proc(n) local k ; add(binomial(n,k)*binomial(n+k,k),k=0..n) ; end: A137220 := proc(n) (A126086(n)+3*A001850(n)+2)/6 ; end: seq(A137220(n),n=0..30) ; # R. J. Mathar, Apr 01 2008
  • Mathematica
    T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
    Table[T[n, 3], {n, 0, 15}] (* Jean-François Alcover, Apr 10 2020, after Andrew Howroyd *)
  • PARI
    a(n) = {sum(j=0, 3*n, binomial(binomial(j,n)+2, 3) * sum(i=j, 3*n, (-1)^(i-j)*binomial(i,j)))} \\ Andrew Howroyd, Feb 09 2020
    
  • Sage
    @CachedFunction
    def A137220(n): return round( -sum( binomial(-binomial(j, n), 3)/2^(j+1) for j in (0..500) ) )
    [A137220(n) for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = -Sum_{m>=0} binomial(-binomial(m,n),3)/2^(m+1).
a(n) = A137219(n) + A001850(n). - R. J. Mathar, Apr 01 2008
a(n) = Sum_{j=0..3*n} binomial(binomial(j,n)+2, 3) * (Sum_{i=j..3*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020

Extensions

More terms from R. J. Mathar, Apr 01 2008

A331396 Number of nonnegative integer matrices with 2 distinct columns and any number of nonzero rows with column sums n and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 12, 124, 1280, 13456, 143808, 1556416, 17006592, 187207936, 2072947712, 23063919616, 257634271232, 2887544049664, 32456082440192, 365710391885824, 4129672996585472, 46721752249729024, 529486122704437248, 6009576477811277824, 68299997524116111360
Offset: 1

Views

Author

Andrew Howroyd, Jan 15 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.

Crossrefs

Column k=2 of A331278.

Programs

  • PARI
    seq(n)={Vec(1/(4*sqrt(1 - 12*x + 4*x^2 + O(x*x^n))) - 1/(4*(1-2*x)))}

Formula

a(n) = (A052141(n) - A011782(n))/2.
G.f.: 1/(4*sqrt(1 - 12*x + 4*x^2)) - 1/(4*(1-2*x)).
a(n) = A011782(n) * A047665(n).

A104553 Sum of trapezoid weights of all Schroeder paths of length 2n.

Original entry on oeis.org

1, 7, 38, 198, 1039, 5533, 29852, 162716, 893997, 4942723, 27466082, 153264066, 858230875, 4820155001, 27141345912, 153168964216, 866086326425, 4905744855359, 27830459812830, 158102366711550, 899290473825511, 5120997554408597, 29191620055374228, 166560724629655188
Offset: 1

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318). A trapezoid in a Schroeder path is a factor of the form U^i H^j D^i (i>=1, j>=0), i being the height of the trapezoid. A trapezoid in a Schroeder path w is maximal if, as a factor in w, it is not immediately preceded by a U and immediately followed by a D. The trapezoid weight of a Schroeder path is the sum of the heights of its maximal trapezoids. For example, in the Schroeder path w=UH(UHD)D(UUDD) we have two trapezoids (shown between parentheses) of heights 1 and 2, respectively. The trapezoid weight of w is 1+2=3. This concept is an analogous to the concept of pyramid weight in a Dyck path (see the Denise-Simion paper). Partial sums of A047665 which, in turn, are the partial sums of A002002.

Examples

			a(2) = 7 because the six Schroeder paths of length 4, namely HH,(UD)H,H(UD),(UHD), (UD)(UD) and (UUDD), have trapezoid weights 0,1,1,1,2 and 2, respectively; the maximal trapezoids are shown between parentheses.
		

Crossrefs

Programs

  • Maple
    G:=(1-z-sqrt(1-6*z+z^2))/2/(1-z)^2/sqrt(1-6*z+z^2):Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
  • Mathematica
    CoefficientList[Series[(1 - x - Sqrt[1 - 6 x + x^2]) / x /(2 (1 - x)^2 Sqrt[1 - 6 x + x^2]), {x, 0, 30}], x] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-6*x+x^2))/(2*(1-x)^2*sqrt(1-6*x+x^2))) \\ Joerg Arndt, May 13 2013

Formula

G.f.: (1-x-sqrt(1-6*x+x^2))/(2*(1-x)^2*sqrt(1-6*x+x^2)).
Recurrence: n*(2*n-3)*a(n) = 2*(8*n^2 - 15*n + 5)*a(n-1) - 2*(14*n^2 - 28*n + 11)*a(n-2) + 2*(8*n^2 - 17*n + 7)*a(n-3) - (n-2)*(2*n-1)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(16*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 24 2012

Extensions

Typo in Mma program fixed by Vincenzo Librandi, May 13 2013

A363570 Expansion of (1 / sqrt(1 - 8*x + 4*x^2) - 1 / (1 - x)) / 3.

Original entry on oeis.org

0, 1, 7, 45, 295, 1981, 13545, 93829, 656311, 4625181, 32788657, 233567269, 1670457321, 11987269477, 86268665917, 622391877045, 4500029549911, 32598283556317, 236542093805025, 1719008077215205, 12509403045819505, 91143878730342021, 664816240262272237
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[(1/Sqrt[1 - 8 x + 4 x^2] - 1/(1 - x))/3, {x, 0, nmax}], x]
    nmax = 22; CoefficientList[Series[Exp[x] (Exp[3 x] BesselI[0, 2 Sqrt[3] x] - 1)/3, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k]^2 3^(k - 1), {k, 1, n}], {n, 0, 22}]
    Table[(2^n LegendreP[n, 2] - 1)/3, {n, 0, 22}]

Formula

E.g.f.: exp(x) * (exp(3*x) * BesselI(0,2*sqrt(3)*x) - 1) / 3.
a(n) = Sum_{k=1..n} binomial(n,k)^2 * 3^(k-1).
a(n) = (2^n * LegendreP(n,2) - 1) / 3.
a(n) = (A069835(n) - 1) / 3.

A363571 Expansion of (1 / sqrt(1 - 10*x + 9*x^2) - 1 / (1 - x)) / 4.

Original entry on oeis.org

0, 1, 8, 61, 480, 3881, 31976, 266981, 2251136, 19124881, 163452168, 1403748941, 12104113632, 104723793721, 908680775528, 7904234296181, 68905275700736, 601832985410081, 5265459181363976, 46137526574521181, 404821208100919520, 3556361565584509001
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[(1/Sqrt[1 - 10 x + 9 x^2] - 1/(1 - x))/4, {x, 0, nmax}], x]
    nmax = 21; CoefficientList[Series[Exp[x] (Exp[4 x] BesselI[0, 4 x] - 1)/4, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k]^2 4^(k - 1), {k, 1, n}], {n, 0, 21}]
    Table[(3^n LegendreP[n, 5/3] - 1)/4, {n, 0, 21}]

Formula

E.g.f.: exp(x) * (exp(4*x) * BesselI(0,4*x) - 1) / 4.
a(n) = Sum_{k=1..n} binomial(n,k)^2 * 4^(k-1).
a(n) = (3^n * LegendreP(n,5/3) - 1) / 4.
a(n) = (A084771(n) - 1) / 4.
Showing 1-10 of 10 results.