cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A047663 Row 6 of square array defined in A047662.

Original entry on oeis.org

6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, 289562, 440342, 651888, 942480, 1334262, 1853754, 2532396, 3407124, 4520978, 5923742, 7672616, 9832920, 12478830, 15694146, 19573092, 24221148, 29755914, 36308006
Offset: 1

Views

Author

Keywords

Programs

  • GAP
    List([1..35],n->n/45*(2*n^5+6*n^4+35*n^3+60*n^2+98*n+69)); # Muniru A Asiru, Nov 21 2018
  • Maple
    seq(coeff(series(x*(-6*x^4-20*x^2-6)/(x-1)^7,x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Nov 21 2018
  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6, 42, 188, 644, 1826, 4494, 9912 }, 50] (* or *)
    CoefficientList[Series[-((2 (3 + 10 x^2 + 3 x^4))/(-1 + x)^7), {x, 0, 50}], x] (* Stefano Spezia, Nov 01 2018 *)

Formula

a(n) = (n/45) * (2n^5 + 6n^4 + 35n^3 + 60n^2 + 98n + 69).
From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
G.f.: x*(-6*x^4 - 20*x^2 - 6)/(x - 1)^7. (End)

A047661 Row 5 of square array defined in A047662.

Original entry on oeis.org

5, 30, 115, 340, 841, 1826, 3591, 6536, 11181, 18182, 28347, 42652, 62257, 88522, 123023, 167568, 224213, 295278, 383363, 491364, 622489, 780274, 968599, 1191704, 1454205, 1761110, 2117835, 2530220, 3004545, 3547546, 4166431, 4868896, 5663141, 6557886, 7562387
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047662.

Programs

  • Mathematica
    Table[(n/15)(2n^4+5n^3+20n^2+25n+23),{n,30}] (* Harvey P. Dale, Nov 25 2022 *)
  • PARI
    my(x='x+O('x^35)); Vec(x*(5+10*x^2+x^4)/(1-x)^6) \\ Elmo R. Oliveira, Sep 02 2025

Formula

a(n) = (n/15)*(2*n^4 + 5*n^3 + 20*n^2 + 25*n + 23). [Corrected by Sean A. Irvine, May 13 2021]
From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: x*(5 + 10*x^2 + x^4)/(x-1)^6.
E.g.f.: x*(5 + 5*x + x^2)*(15 + 15*x + 2*x^2)*exp(x)/15.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. (End)

Extensions

More terms from Elmo R. Oliveira, Sep 02 2025

A047664 Row 7 of square array defined in A047662.

Original entry on oeis.org

7, 56, 287, 1120, 3591, 9912, 24319, 54272, 112071, 216952, 397727, 696032, 1170247, 1900152, 2992383, 4586752, 6863495, 10051512, 14437663, 20377184, 28305287, 38750008, 52346367, 69851904, 92163655, 120336632, 155603871
Offset: 1

Views

Author

Keywords

Formula

a(n) = (n/315) * (4*n^6 + 14*n^5 + 112*n^4 + 245*n^3 + 616*n^2 + 686*n + 528).

A001850 Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).

Original entry on oeis.org

1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
Offset: 0

Views

Author

Keywords

Comments

Number of paths from (0,0) to (n,n) in an n X n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)).
Also the number of ways of aligning two sequences (e.g., of nucleotides or amino acids) of length n, with at most 2*n gaps (-) inserted, so that while unnecessary gappings: - -a a- - are forbidden, both b- and -b are allowed. (If only other of the latter is allowed, then the sequence A000984 gives the number of alignments.) There is an easy bijection from grid walks given by Dickau to such set of alignments (e.g., the straight diagonal corresponds to the perfect alignment with no gaps). - Antti Karttunen, Oct 10 2001
Also main diagonal of array A008288 defined by m(i,1) = m(1,j) = 1, m(i,j) = m(i-1,j-1) + m(i-1,j) + m(i,j-1). - Benoit Cloitre, May 03 2002
So, as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= n from any given point. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 26 2022
a(n) is the number of n-matchings of a comb-like graph with 2*n teeth. Example: a(2) = 13 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has 13 2-matchings: any of the six possible pairs of teeth and {Aa, BC}, {Aa, CD}, {Bb, CD}, {Cc, AB}, {Dd, AB}, {Dd, BC}, {AB, CD}. - Emeric Deutsch, Jul 02 2002
Number of ordered trees with 2*n+1 edges, having root of odd degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
The sum of the first n coefficients of ((1 - x) / (1 - 2*x))^n is a(n-1). - Michael Somos, Sep 28 2003
Row sums of A063007 and A105870. - Paul Barry, Apr 23 2005
The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D =(1,-1), U can have 2 colors and H can have 3 colors. - N-E. Fahssi, Jan 27 2008
Equals row sums of triangle A152250 and INVERT transform of A109980: (1, 2, 8, 36, 172, 852, ...). - Gary W. Adamson, Nov 30 2008
Number of overpartitions in the n X n box (treat a walk of the type in the first comment as an overpartition, by interpreting a NE step as N, E with the part thus created being overlined). - William J. Keith, May 19 2017
Diagonal of rational functions 1/(1 - x - y - x*y), 1/(1 - x - y*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Dimensions of endomorphism algebras End(R^{(n)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023
a(n) is the number of ways to tile a strip of length n with white squares, black squares, and red dominos, where we must have an equal number of white and black squares. - Greg Dresden and Leo Zhang, Jul 11 2025

Examples

			G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
		

References

  • Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Main diagonal of A064861.
Column k=2 of A262809 and A263159.

Programs

  • Maple
    seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006
    seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
  • Mathematica
    f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
    a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
    CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
    Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
    a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
    a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
  • Maxima
    a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
    
  • PARI
    my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
    
  • Python
    # from Nick Hobson.
    def f(a, b):
        if a == 0 or b == 0:
            return 1
        return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
    [f(n, n) for n in range(7)]
    
  • Python
    from gmpy2 import divexact
    A001850 = [1, 3]
    for n in range(2,10**3):
        A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    a = lambda n: hypergeometric([-n, -n], [1], 2)
    [simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014

Formula

a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
a(n) = a(n-1) + 2*A002002(n) = Sum_{j} A063007(n, j). - Henry Bottomley, Jul 02 2001
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
a(n) = A008288(A046092(n)). - Philippe Deléham, Apr 08 2009
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
a(n) = Sum_{k=0..n} C(n+k, 2*k) * C(2*k, k). - Greg Dresden and Leo Zhang, Jul 11 2025

Extensions

New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996

A047665 Expansion of (1/sqrt(1-6*x+x^2)-1/(1-x))/2.

Original entry on oeis.org

0, 1, 6, 31, 160, 841, 4494, 24319, 132864, 731281, 4048726, 22523359, 125797984, 704966809, 3961924126, 22321190911, 126027618304, 712917362209, 4039658528934, 22924714957471, 130271906898720, 741188107113961, 4221707080583086, 24070622500965631, 137369104574280960, 784622537295845041
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Main diagonal of square array defined in A047662.
a(n) is the total number of weak plateaus in all Schroeder n-paths. A weak plateau is a subpath of the form UFF..FD where there are 0 or more Fs. For example, a(2)=6 counts the following weak plateaus (in parentheses) in the 6 Schroeder 2-paths: (UFD), U(UD)D, FF, (UD)F, F(UD), (UD)(UD). - David Callan, Aug 16 2006

Crossrefs

Cf. A001850, A002002 (Schroeder paths interpretation).
Cf. A008288 (Delannoy numbers triangle).

Programs

  • Maple
    seq(add(multinomial(n+k,n-k,k,k)/2,k=1..n),n=1..22); # Zerinvary Lajos, Oct 18 2006
    a:=n->add(add(binomial(n,j)*binomial(n,k)*binomial(k,j), j=0..n),k=1..n): seq(a(n)/2, n=1..22); # Zerinvary Lajos, Jun 02 2007
  • Mathematica
    Table[SeriesCoefficient[(1/Sqrt[1-6*x+x^2]-1/(1-x))/2,{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); Vec((1/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ Joerg Arndt, May 04 2013
    
  • Sage
    a = lambda n: (hypergeometric([-n, n+1], [1], -1)-1)/2
    [simplify(a(n)) for n in (1..25)] # Peter Luschny, May 19 2015

Formula

2*a(n)+1 = A001850(n).
a(n)-a(n-1) = A002002(n).
a(n) = Sum_{k=0..n} Sum_{j=0..n} A008288(k, j).
a(n) = Sum_{j=1..n} C(2*j-1, j-1)*C(n+j, 2*j). - Stefan Hollos (stefan(AT)exstrom.com), Jul 21 2004
D-finite with recurrence: n*(2*n-3)*a(n) = (2*n-1)*(7*n-10)*a(n-1) - (2*n-3)*(7*n-4)*a(n-2) + (n-2)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (hyper2F1(-n,n+1,1,-1)-1)/2 = (hyper2F1(-n, -n, 1, 2)-1)/2. - Peter Luschny, May 19 2015
a(n) = Sum_{k=1..n} binomial(n,k)^2 * 2^(k-1). - Ilya Gutkovskiy, Nov 15 2021

Extensions

Prepended 0, set offset to 0 and new name using a comment of Emeric Deutsch from Dec 25 2003 by Peter Luschny, May 20 2015

A048776 First partial sums of A048739; second partial sums of A000129.

Original entry on oeis.org

1, 4, 12, 32, 81, 200, 488, 1184, 2865, 6924, 16724, 40384, 97505, 235408, 568336, 1372096, 3312545, 7997204, 19306972, 46611168, 112529329, 271669848, 655869048, 1583407968, 3822685009, 9228778012, 22280241060, 53789260160, 129858761409, 313506783008
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) + a(n-2) + n + 1; a(0)=1, a(1)=4.
a(n) = (((7/2 + (5/2)*sqrt(2))*(1+sqrt(2))^n - (7/2 - (5/2)*sqrt(2))*(1-sqrt(2))^n)/2*sqrt(2)) - (n+3)/2.
a(n) = (A000129(n+3) - (n+3))/2 = Sum_{j} A047662(n-j+1, j+1). - Henry Bottomley, Jul 09 2001
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
G.f.: -1/((x^2+2*x-1) * (x-1)^2). (End)
Define an array with m(n,1)=1 and m(1,k) = k*(k+1)/2 for n=1,2,3,... The interior terms are m(n,k) = m(n,k-1) + m(n-1,k-1) + m(n-1,k). The sum of the terms in each antidiagonal=a(n). - J. M. Bergot, Dec 01 2012 [This is A154948 without the first column. The diagonal is m(n,n) = A161731(n-1). R. J. Mathar, Dec 06 2012]
E.g.f.: exp(x)*(10*cosh(sqrt(2)*x) + 7*sqrt(2)*sinh(sqrt(2)*x) - 2*(3 + x))/4. - Stefano Spezia, May 13 2023

Extensions

More terms from Harvey P. Dale, Aug 27 2014

A047671 Square array a(n,k) read by antidiagonals: a(n,1)=1, a(1,k)=1, a(n,k) = 1 + a(n-1,k-1) + a(n-1,k) + a(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 19, 10, 1, 1, 13, 37, 37, 13, 1, 1, 16, 61, 94, 61, 16, 1, 1, 19, 91, 193, 193, 91, 19, 1, 1, 22, 127, 346, 481, 346, 127, 22, 1, 1, 25, 169, 565, 1021, 1021, 565, 169, 25, 1, 1, 28, 217, 862, 1933, 2524, 1933, 862
Offset: 1

Views

Author

Keywords

Crossrefs

Main diagonal is A027618. Rows give A003215, A047672, A047673, A047674.
a(n, k) = A008288(n-1, k-1) + A047662(n-1, k-1).

Programs

  • Maple
    A047671 := proc(n,k) option remember; if n = 1 then 1; elif k = 1 then 1; else 1+A047671(n-1,k-1)+A047671(n,k-1)+A047671(n-1,k); fi; end;
  • Mathematica
    nmax = 12; a[, 1] = 1; a[1, ] = 1; a[n_ /; n > 1, k_ /; k > 1] :=  a[n, k] = 1 + a[n-1, k-1] + a[n-1, k] + a[n, k-1]; Flatten[ Table[ a[n-k , k], {n, 1, nmax}, {k, 1, n-1}]] (* Jean-François Alcover, Jul 19 2012 *)

Extensions

Description corrected by Henry Bottomley, May 09 2000
Showing 1-7 of 7 results.