A047696 Smallest positive number that can be written in n ways as a sum of two (not necessarily positive) cubes.
1, 91, 728, 2741256, 6017193, 1412774811, 11302198488, 137513849003496, 424910390480793000, 933528127886302221000
Offset: 1
Examples
91 = 6^3 - 5^3 = 4^3 + 3^3 (in two ways). Cabtaxi(9)=424910390480793000 = 645210^3 + 538680^3 = 649565^3 + 532315^3 = 752409^3 - 101409^3 = 759780^3 - 239190^3 = 773850^3 - 337680^3 = 834820^3 - 539350^3 = 1417050^3 - 1342680^3 = 3179820^3 - 3165750^3 = 5960010^3 - 5956020^3.
References
- C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
- R. K. Guy, Unsolved Problems in Number Theory, Section D1.
Links
- Daniel J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d)
- Daniel J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d)
- Christian Boyer, New upper bounds on Taxicab and Cabtaxi numbers.
- Christian Boyer, New upper bounds for Taxicab and Cabtaxi numbers, JIS 11 (2008) 08.1.6.
- Shyam Sunder Gupta, On Some Special Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 22, 527-565.
- Uwe Hollerbach, The tenth cabtaxi number is 933528127886302221000, May 14, 2008.
- Uwe Hollerbach, Taxi, Taxi! [Original link, broken]
- Uwe Hollerbach, Taxi, Taxi! [Replacement link to Wayback Machine]
- Uwe Hollerbach, Taxi! Taxi! [Cached copy from Wayback Machine, html version of top page only]
- Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
- Eric Weisstein's World of Mathematics, Taxicab Numbers
- Eric Weisstein's World of Mathematics, Cabtaxi Number
- Wikipedia, Cabtaxi number
Extensions
a(9) (which was found on Jan 31 2005) from Duncan Moore (Duncan.Moore(AT)nnc.co.uk), Feb 01 2005
Comments