A047732 First differences are A005563.
1, 4, 12, 27, 51, 86, 134, 197, 277, 376, 496, 639, 807, 1002, 1226, 1481, 1769, 2092, 2452, 2851, 3291, 3774, 4302, 4877, 5501, 6176, 6904, 7687, 8527, 9426, 10386, 11409, 12497, 13652, 14876, 16171, 17539, 18982, 20502, 22101, 23781, 25544, 27392, 29327
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[1, 4, 12, 27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
Mathematica
CoefficientList[Series[(1+2*x^2-x^3)/((1-x)^4),{x,0,50}],x] (* Vincenzo Librandi, Jun 28 2012 *) LinearRecurrence[{4,-6,4,-1},{1,4,12,27},50] (* Harvey P. Dale, Aug 22 2015 *)
Formula
a(n) = A051925(n+1) + 1. - Alex Ratushnyak, Jun 27 2012
From Vincenzo Librandi, Jun 28 2012: (Start)
G.f.: (1 + 2*x^2 - x^3)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (2*n^3 + 9*n^2 + 7*n + 6)/6. (End)
a(n) = A000330(n+1) - n. - John Tyler Rascoe, Jun 24 2022
Comments