cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047732 First differences are A005563.

Original entry on oeis.org

1, 4, 12, 27, 51, 86, 134, 197, 277, 376, 496, 639, 807, 1002, 1226, 1481, 1769, 2092, 2452, 2851, 3291, 3774, 4302, 4877, 5501, 6176, 6904, 7687, 8527, 9426, 10386, 11409, 12497, 13652, 14876, 16171, 17539, 18982, 20502, 22101, 23781, 25544, 27392, 29327
Offset: 0

Views

Author

Patternfinder(AT)webtv.net (Robert Newstedt)

Keywords

Comments

Number of 3-permutations of n elements avoiding the patterns 132, 321. See Bonichon and Sun. - Michel Marcus, Aug 19 2022

Crossrefs

Programs

  • Magma
    I:=[1, 4, 12, 27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
  • Mathematica
    CoefficientList[Series[(1+2*x^2-x^3)/((1-x)^4),{x,0,50}],x] (* Vincenzo Librandi, Jun 28 2012 *)
    LinearRecurrence[{4,-6,4,-1},{1,4,12,27},50] (* Harvey P. Dale, Aug 22 2015 *)

Formula

a(n) = A051925(n+1) + 1. - Alex Ratushnyak, Jun 27 2012
From Vincenzo Librandi, Jun 28 2012: (Start)
G.f.: (1 + 2*x^2 - x^3)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (2*n^3 + 9*n^2 + 7*n + 6)/6. (End)
a(n) = A000330(n+1) - n. - John Tyler Rascoe, Jun 24 2022