cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002306 Numerators of Hurwitz numbers H_n (coefficients in expansion of Weierstrass P-function).

Original entry on oeis.org

1, 3, 567, 43659, 392931, 1724574159, 2498907956391, 1671769422825579, 88417613265912513891, 21857510418232875496803, 2296580829004860630685299, 3133969138162958884235052785487, 6456973729353591041508572318079423
Offset: 1

Views

Author

Keywords

Comments

Named after the German mathematician Adolf Hurwitz (1859-1919). - Amiram Eldar, Jun 24 2021

Examples

			Hurwitz numbers H_1, H_2, ... = 1/10, 3/10, 567/130, 43659/170, 392931/10, ... = A002306/A047817.
		

References

  • Franz Lemmermeyer, Reciprocity Laws, Springer-Verlag, 2000; see p. 276.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Denominators give A047817.

Programs

  • Maple
    H := proc(n) local k; option remember; if n = 1 then 1/10 else 3*add((4*k - 1)*(4*n - 4*k - 1)*binomial(4*n, 4*k)*H(k)*H(n - k), k = 1 .. n - 1)/( (2*n - 3)*(16*n^2 - 1)) fi; end;  A002306 := n -> numer(H(n)); seq(A002306(n),n=1..15);
    # Alternative program
    c := n -> (n*(4*n-2)!/(2^(4*n-2)))*coeff(series(WeierstrassP(z,4,0),z, 4*n+2),z,4*n-2); a := n -> numer(c(n)); seq(a(n), n=1..13); # Peter Luschny, Aug 18 2014
  • Mathematica
    a[1] = 1/10; a[n_] := a[n] = (3/(2*n - 3)/(16*n^2 - 1))* Sum[(4*k - 1)*(4*n - 4*k - 1)*Binomial[4*n, 4*k]*a[k]* a[n - k], {k, 1, n - 1}]; Numerator[ Table[a[n], {n, 1, 13}]] (* Jean-François Alcover, Oct 18 2011, after PARI *)
    p[z_] := WeierstrassP[z, {4, 0}]; a[n_] := (n*(4*n-2)!/(2^(4*n-2))) * SeriesCoefficient[p[z], {z, 0, 4*n-2}] // Numerator; Array[a, 13] (* Jean-François Alcover, Sep 07 2012, updated Oct 22 2016 *)
    a[ n_] := If[ n < 0, 0, Numerator[ 2^(-4 n) (4 n)! SeriesCoefficient[ 1 - x WeierstrassZeta[ x, {4, 0}], {x, 0, 4 n}]]]; (* Michael Somos, Mar 05 2015 *)
  • PARI
    do(lim)=v=vector(lim); v[1]=1/10; for(n=2,lim,v[n]=3/(2*n-3)/(16*n^2-1)*sum(k=1,n-1,(4*k-1)*(4*n-4*k-1)*binomial(4*n,4*k)*v[k]*v[n-k])) \\ Henri Cohen, Mar 18 2002

Formula

Let P be the Weierstrass P-function satisfying P'^2 = 4*P^3 - 4*P. Then P(z) = 1/z^2 + Sum_{n>=1} 2^(4n)*H_n*z^(4n-2)/(4n*(4n-2)!).
Sum_{ (r, s) != (0, 0) } 1/(r+si)^(4n) = (2w)^(4n)*H_n/(4n)! where w = 2 * Integral_{0..1} dx/(sqrt(1-x^4)).
See PARI line for recurrence.

A002770 Integers connected with coefficients in expansion of Weierstrass P-function.

Original entry on oeis.org

-1, 5, 253, 39299, 13265939, 8616924013, 9833937781275, 18382040180023477, 53311001020080183933, 229658082900486063068939, 1418085582879166915943461879, 12182969300667152908506740224429, 141998788870155117956738989275999795
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 20; H[n_] := (n*(4*n - 2)!/(2^(4*n - 2)))*SeriesCoefficient[ WeierstrassP[z, {4, 0}], {z, 0, 4*n - 2}]; pp = Select[Prime[Range[2 nmax]], Mod[#, 4] == 1&]; Scan[(chi[#] = -Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}])&, pp]; a[n_] := H[n] - 1/2 - Sum[If[Divisible[4 n, p - 1], chi[p]^(4*n/(p - 1))/p, 0], {p, pp}]; Table[a[n], {n, 2, nmax}] (* Jean-François Alcover, Dec 11 2014, updated Oct 22 2016 *)

Formula

a(n) = A002306(n) / A047817(n) - 1/2 - sum(chi(p)^(4*n / (p-1))/p) where the sum is over primes p of the form 4k+1 such that p-1 divides 4*n and the numbers chi(p) are given by A002172. The resulting a(n) is an integer despite all the rationals. - Sean A. Irvine, Aug 17 2014

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 07 2004

A274398 Numerators of 1/2 + sum(chi(p)^(4*n / (p-1))/p) where the sum is over primes p of the form 4k+1 such that p-1 divides 4*n and the numbers chi(p) are given by A002172.

Original entry on oeis.org

1, 13, -83, 649, -59, 2089, -7379, 8829, -410479, 84273, -4091, 2032897, -867947, 951417, -47224023, 2228469, -262139, 19669687769, -1048571, 1461748549, -1500199283, 746586657, -16777211, 747004180629, -6777994779, 7113541809, -13667368865299, 29908738140693
Offset: 1

Views

Author

Seiichi Manyama, Sep 26 2016

Keywords

Examples

			H_1 = 1/10 = 1/2 - 2/5 = 1/10, so a(1) = 1.
H_2 = 3/10 = 1/2 + 2^2/5 - 1 = 13/10 - 1, so a(2) = 13.
H_3 = 567/130 = 1/2 - 2^3/5 + 6/13 + 5 = -83/130 + 5, so a(3) = -83.
H_4 = 43659/170 = 1/2 + 2^4/5 + 2/17 + 253 = 649/170 + 253, so a(4) = 649.
		

Crossrefs

Programs

  • Mathematica
    nmax = 28; H[n_] := (n*(4*n - 2)!/(2^(4*n - 2)))*SeriesCoefficient[ WeierstrassP[z, {4, 0}], {z, 0, 4*n - 2}]; pp = Select[Prime[Range[2 nmax]], Mod[#, 4] == 1 &]; Scan[(chi[#] = -Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}])&, pp]; a[n_] := 1/2 + Sum[If[Divisible[4 n, p - 1], chi[p]^(4*n/(p - 1))/p, 0], {p, pp}] // Numerator; Array[a, nmax] (* Jean-François Alcover, Oct 22 2016 *)

Formula

The n-th Hurwitz number is A002306(n)/A047817(n) = a(n)/A047817(n) + A002770(n).
a(n) = A002306(n) - A002770(n) * A047817(n) for n > 1.
Showing 1-3 of 3 results.