cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A047817 Denominators of Hurwitz numbers H_n (coefficients in expansion of Weierstrass P-function).

Original entry on oeis.org

10, 10, 130, 170, 10, 130, 290, 170, 4810, 410, 10, 2210, 530, 290, 7930, 170, 10, 351130, 10, 6970, 3770, 890, 10, 214370, 1010, 530, 524290, 557090, 10, 325130, 10, 170, 130, 1370, 290, 5969210, 1490, 10, 1081730, 6970, 10, 3770
Offset: 1

Views

Author

Keywords

Comments

Hurwitz showed (see Katz, eqn. 9) that a(n) = product of the prime p = 2 and the primes p of the form 4*k + 1 such that p - 1 divides 4*n. It follows that a(n) is a divisibility sequence, that is, if n | m then a(n) | a(m). - Peter Bala, Jan 08 2014

Examples

			Hurwitz numbers H_1, H_2, ... = 1/10, 3/10, 567/130, 43659/170, 392931/10, ...
		

References

  • F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, 2000; see p. 276.

Crossrefs

For numerators see A002306.
Cf. A160014.

Programs

  • Maple
    H := proc(n) local k; option remember; if n = 1 then 1/10 else 3*add((4*k - 1)*(4*n - 4*k - 1)*binomial(4*n, 4*k)*H(k)*H(n - k), k = 1 .. n - 1)/( (2*n - 3)*(16*n^2 - 1)) fi; end;
    a := n -> denom(H(n));
    # Implementation based on Hurwitz's extension of Clausen's theorem:
    GenClausen := proc(n) local k,S; map(k->k+1, numtheory[divisors](n));
        S := select(p-> isprime(p) and p mod 4 = 1, %);
        if S <> {} then 2*mul(k,k=S) else NULL fi end:
    A047817_list := proc(n) local i; seq(GenClausen(i),i=1..4*n) end;
    A047817_list(42); # Peter Luschny, Oct 03 2011
    # Implementation based on Weierstrass's P-function:
    c := n -> (n*(4*n-2)!/(2^(4*n-2)))*coeff(series(WeierstrassP(z,4,0),z, 4*n+2),z,4*n-2); a := n -> denom(c(n)); seq(a(n), n=1..42); # Peter Luschny, Aug 18 2014
  • Mathematica
    a[1] = 1/10; a[n_] := a[n] = (3/(2*n - 3)/(16*n^2 - 1))* Sum[(4*k - 1)*(4*n - 4*k - 1)*Binomial[4*n, 4*k]*a[k]* a[n - k], {k, 1, n - 1}]; Denominator[ Table[a[n], {n, 1, 42}]] (* Jean-François Alcover, Oct 18 2011, after PARI *)
    a[ n_] := If[ n < 1, 0, Denominator[ 2^(-4 n) (4 n)! SeriesCoefficient[ 1 - x WeierstrassZeta[ x, {4, 0}], {x, 0, 4 n}]]]; (* Michael Somos, Mar 05 2015 *)
  • PARI
    do(lim)=v=vector(lim); v[1]=1/10; for(n=2,lim,v[n]=3/(2*n-3)/(16*n^2-1)*sum(k=1,n-1,(4*k-1)*(4*n-4*k-1)*binomial(4*n,4*k)*v[k]*v[n-k])) \\ Henri Cohen, Mar 18 2002

Formula

Let P be the Weierstrass P-function satisfying P'^2 = 4*P^3 - 4*P. Then P(z) = 1/z^2 + Sum_{n>=1} 2^(4n)*H_n*z^(4n-2)/(4n*(4n-2)!).
Sum_{ (r, s) != (0, 0) } 1/(r+si)^(4n) = (2w)^(4n)*H_n/(4n)! where w = 2 * Integral_{0..1} dx/(sqrt(1-x^4)).
See PARI line for recurrence.

A082307 Expansion of e.g.f. (1+x)*exp(3*x)*cosh(x).

Original entry on oeis.org

1, 4, 16, 66, 280, 1208, 5248, 22816, 98944, 427392, 1838080, 7870976, 33568768, 142637056, 604045312, 2550276096, 10737713152, 45097779200, 188979871744, 790276734976, 3298540650496, 13743907405824, 57174629810176
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Comments

Binomial transform of A002306; a(n)=(A082308(n)+A079028(n))/2

Crossrefs

Cf. A082308.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(3*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1+x)*exp(3*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
    

Formula

a(n) = ((n+2)*2^(n-1) + (n+4)*4^(n-1))/2.
G.f.: ((1-3x)/(1-4x)^2 + (1-x)/(1-2x)^2)/2.
E.g.f. (1+x)*exp(3*x)*cosh(x).

A002770 Integers connected with coefficients in expansion of Weierstrass P-function.

Original entry on oeis.org

-1, 5, 253, 39299, 13265939, 8616924013, 9833937781275, 18382040180023477, 53311001020080183933, 229658082900486063068939, 1418085582879166915943461879, 12182969300667152908506740224429, 141998788870155117956738989275999795
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 20; H[n_] := (n*(4*n - 2)!/(2^(4*n - 2)))*SeriesCoefficient[ WeierstrassP[z, {4, 0}], {z, 0, 4*n - 2}]; pp = Select[Prime[Range[2 nmax]], Mod[#, 4] == 1&]; Scan[(chi[#] = -Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}])&, pp]; a[n_] := H[n] - 1/2 - Sum[If[Divisible[4 n, p - 1], chi[p]^(4*n/(p - 1))/p, 0], {p, pp}]; Table[a[n], {n, 2, nmax}] (* Jean-François Alcover, Dec 11 2014, updated Oct 22 2016 *)

Formula

a(n) = A002306(n) / A047817(n) - 1/2 - sum(chi(p)^(4*n / (p-1))/p) where the sum is over primes p of the form 4k+1 such that p-1 divides 4*n and the numbers chi(p) are given by A002172. The resulting a(n) is an integer despite all the rationals. - Sean A. Irvine, Aug 17 2014

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 07 2004

A260779 Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.

Original entry on oeis.org

1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2015

Keywords

Comments

This is for the lemniscate case where g2=4, g3=0. - Michael Somos, Jul 10 2024

Crossrefs

Cf. A144849.

Programs

  • Maple
    A260779 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            a :=0 ;
            for r from 0 to n-1 do
                s := n-1-r ;
                if s >=0 and s <= n-1 then
                a := a+procname(r)*procname(s) *binomial(4*n,4*r+2) ;
                end if;
            end do:
            a*(-12) ;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *)
    a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)

Formula

Hurwitz (Eq. (84)) gives a recurrence.
a(n) = (-12)^n * A144849(n). - R. J. Mathar, Aug 03 2015

A274398 Numerators of 1/2 + sum(chi(p)^(4*n / (p-1))/p) where the sum is over primes p of the form 4k+1 such that p-1 divides 4*n and the numbers chi(p) are given by A002172.

Original entry on oeis.org

1, 13, -83, 649, -59, 2089, -7379, 8829, -410479, 84273, -4091, 2032897, -867947, 951417, -47224023, 2228469, -262139, 19669687769, -1048571, 1461748549, -1500199283, 746586657, -16777211, 747004180629, -6777994779, 7113541809, -13667368865299, 29908738140693
Offset: 1

Views

Author

Seiichi Manyama, Sep 26 2016

Keywords

Examples

			H_1 = 1/10 = 1/2 - 2/5 = 1/10, so a(1) = 1.
H_2 = 3/10 = 1/2 + 2^2/5 - 1 = 13/10 - 1, so a(2) = 13.
H_3 = 567/130 = 1/2 - 2^3/5 + 6/13 + 5 = -83/130 + 5, so a(3) = -83.
H_4 = 43659/170 = 1/2 + 2^4/5 + 2/17 + 253 = 649/170 + 253, so a(4) = 649.
		

Crossrefs

Programs

  • Mathematica
    nmax = 28; H[n_] := (n*(4*n - 2)!/(2^(4*n - 2)))*SeriesCoefficient[ WeierstrassP[z, {4, 0}], {z, 0, 4*n - 2}]; pp = Select[Prime[Range[2 nmax]], Mod[#, 4] == 1 &]; Scan[(chi[#] = -Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}])&, pp]; a[n_] := 1/2 + Sum[If[Divisible[4 n, p - 1], chi[p]^(4*n/(p - 1))/p, 0], {p, pp}] // Numerator; Array[a, nmax] (* Jean-François Alcover, Oct 22 2016 *)

Formula

The n-th Hurwitz number is A002306(n)/A047817(n) = a(n)/A047817(n) + A002770(n).
a(n) = A002306(n) - A002770(n) * A047817(n) for n > 1.
Showing 1-5 of 5 results.