A047859 a(n) = T(2, n), where T is the array given by A047858.
1, 4, 11, 27, 63, 143, 319, 703, 1535, 3327, 7167, 15359, 32767, 69631, 147455, 311295, 655359, 1376255, 2883583, 6029311, 12582911, 26214399, 54525951, 113246207, 234881023, 486539263, 1006632959, 2080374783, 4294967295, 8858370047, 18253611007, 37580963839
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Crossrefs
Programs
-
Magma
[(n+4)*2^(n-1)-1: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
-
PARI
Vec((1-x-x^2)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Aug 24 2016
Formula
Main diagonal of the array defined by: T(0, j) = j + 1 for j >= 0, T(i, 0) = i + 1 for i >= 0, T(i, j)= T(i-1, j-1) + T(i-1, j) + 1. a(n) = (n + 4)*2^(n-1) - 1. - Benoit Cloitre, Jun 17 2003
a(0) = 1, a(1) = 4, a(2) = 11, a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). - Vincenzo Librandi, Sep 28 2011
G.f.: (1 - x - x^2)/((1 - x)*(1 - 2*x)^2). - Colin Barker, Aug 24 2016
a(n) = A045623(n) - 1. - Gus Wiseman, Oct 14 2022
E.g.f.: exp(x)*(exp(x)*(2 + x) - 1). - Stefano Spezia, Jan 02 2023
Comments