cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047860 a(n) = T(3,n), array T given by A047858.

Original entry on oeis.org

1, 5, 14, 34, 78, 174, 382, 830, 1790, 3838, 8190, 17406, 36862, 77822, 163838, 344062, 720894, 1507326, 3145726, 6553598, 13631486, 28311550, 58720254, 121634814, 251658238, 520093694, 1073741822, 2214592510, 4563402750
Offset: 0

Views

Author

Keywords

Comments

The Wikipedia article on L-system Example 2 is "Pythagoras Tree" given by the axiom: 0 and rules: 1 -> 11, 0 -> 1[0]0. The length of the n-th string of symbols is a(n). This interpretation leads to a matrix power formula for a(n). - Michael Somos, Jan 12 2015

Examples

			G.f. = 1 + 5*x + 14*x^2 + 34*x^3 + 78*x^4 + 174*x^5 + 382*x^6 + 830*x^7 + ...
Using the Pythagoras Tree L-system, a(0) = #0 = 1, a(1) = #1[0]0 = 5, a(2) = #11[1[0]0]1[0]0 = 14. - _Michael Somos_, Jan 12 2015
		

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is (4, 5, 6, ...).
First differences of A027993.

Programs

  • Magma
    [2^(n-1)*(n+6)-2: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
    
  • Mathematica
    LinearRecurrence[{5,-8,4},{1,5,14},30] (* Harvey P. Dale, Sep 29 2012 *)
  • PARI
    {a(n) = if( n<0, 0, [1, 1, 1, 1] * [2, 0, 0, 0; 1, 2, 0, 0; 1, 0, 1, 0; 1, 0, 0, 1]^n * [1, 0, 0, 0]~ )}; /* Michael Somos, Jan 12 2015 */
    
  • PARI
    a(n)=([0,1,0; 0,0,1; 4,-8,5]^n*[1;5;14])[1,1] \\ Charles R Greathouse IV, Jul 19 2016

Formula

Main diagonal of the array defined by T(0, j)=j+1 j>=0, T(i, 0)=i+1 i>=0, T(i, j)=T(i-1, j-1)+T(i-1, j)+ 2; a(n)=2^(n-1)*(n+6)-2. - Benoit Cloitre, Jun 17 2003
a(0)=1, a(1)=5, a(2)=14, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Vincenzo Librandi, Sep 28 2011