A047860 a(n) = T(3,n), array T given by A047858.
1, 5, 14, 34, 78, 174, 382, 830, 1790, 3838, 8190, 17406, 36862, 77822, 163838, 344062, 720894, 1507326, 3145726, 6553598, 13631486, 28311550, 58720254, 121634814, 251658238, 520093694, 1073741822, 2214592510, 4563402750
Offset: 0
Examples
G.f. = 1 + 5*x + 14*x^2 + 34*x^3 + 78*x^4 + 174*x^5 + 382*x^6 + 830*x^7 + ... Using the Pythagoras Tree L-system, a(0) = #0 = 1, a(1) = #1[0]0 = 5, a(2) = #11[1[0]0]1[0]0 = 14. - _Michael Somos_, Jan 12 2015
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
- Wikipedia, L-system Example 2: Pythagoras Tree
Crossrefs
n-th difference of a(n), a(n-1), ..., a(0) is (4, 5, 6, ...).
First differences of A027993.
Programs
-
Magma
[2^(n-1)*(n+6)-2: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
-
Mathematica
LinearRecurrence[{5,-8,4},{1,5,14},30] (* Harvey P. Dale, Sep 29 2012 *)
-
PARI
{a(n) = if( n<0, 0, [1, 1, 1, 1] * [2, 0, 0, 0; 1, 2, 0, 0; 1, 0, 1, 0; 1, 0, 0, 1]^n * [1, 0, 0, 0]~ )}; /* Michael Somos, Jan 12 2015 */
-
PARI
a(n)=([0,1,0; 0,0,1; 4,-8,5]^n*[1;5;14])[1,1] \\ Charles R Greathouse IV, Jul 19 2016
Formula
Main diagonal of the array defined by T(0, j)=j+1 j>=0, T(i, 0)=i+1 i>=0, T(i, j)=T(i-1, j-1)+T(i-1, j)+ 2; a(n)=2^(n-1)*(n+6)-2. - Benoit Cloitre, Jun 17 2003
a(0)=1, a(1)=5, a(2)=14, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Vincenzo Librandi, Sep 28 2011
Comments