A047865 Number of derangements of n where minimal cycle size is at least 4.
1, 0, 0, 0, 6, 24, 120, 720, 6300, 58464, 586656, 6384960, 76471560, 994831200, 13939507296, 209097854784, 3345235180560, 56866395720960, 1023601917024000, 19448577603454464, 388972171805410656, 8168409582839579520, 179704944537482689920
Offset: 0
Keywords
References
- H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 147, Eq. 5.2.9 (q=3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 176, Eq. 5.2.9 (q=3).
Programs
-
Maple
with(combstruct): ZL3:=[S,{S=Set(Cycle(Z,card>3))},labeled]: seq (count (ZL3, size=n), n=0..21); # Zerinvary Lajos, Sep 26 2007
-
Mathematica
nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x-x^2/2-x^3/3]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Nov 11 2012 *)
Formula
a(n) = (n-1)*a(n-1) + (n-1)*(n-2)*(n-3)*a(n-4).
E.g.f.: A(x) = 1/(1-x)*exp(-x-x^2/2-x^3/3) = 1 + 6*x^4/4! + 24*x^5/5! + ... satisfies the differential equation A'(x) = x^3/(1-x)*A(x). - Peter Bala, Apr 18 2012
a(n) ~ n! * exp(-11/6). - Vaclav Kotesovec, Aug 13 2013
Extensions
Definition adjusted by Steven Finch, Mar 10 2022