A047937 Number of 2-colorings of an n X n grid, up to rotational symmetry.
1, 2, 6, 140, 16456, 8390720, 17179934976, 140737496748032, 4611686019501162496, 604462909807864344215552, 316912650057057631849169289216, 664613997892457937028364283517337600, 5575186299632655785385110159782842147536896, 187072209578355573530071668259090783437390809661440
Offset: 0
Examples
a(2)=6 from 00 10 11 10 11 11 00 00 00 01 10 11
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Peter Kagey, Illustration of a(3)=140
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
Crossrefs
Programs
-
Mathematica
Table[(2^(n^2)+2*2^Floor[n^2/4]*2^Mod[n,2]+2^Floor[n^2/2]*2^Mod[n,2])/4,{n,0,10}] (* Geoffrey Critzer, Oct 28 2011 *)
Formula
a(n) = (m^(n^2) + 2*m^((n^2 + 3*(n mod 2))/4) + m^((n^2 + (n mod 2))/2))/4, with m = 2.
Extensions
Terms a(12) and beyond from Andrew Howroyd, Apr 14 2021
Comments