A343095
Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 24, 140, 1, 0, 1, 5, 70, 4995, 16456, 1, 0, 1, 6, 165, 65824, 10763361, 8390720, 1, 0, 1, 7, 336, 489125, 1073758336, 211822552035, 17179934976, 1, 0, 1, 8, 616, 2521476, 38147070625, 281474993496064, 37523658921114744, 140737496748032, 1, 0
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 ...
2 | 0 1 6 24 70 165 ...
3 | 0 1 140 4995 65824 489125 ...
4 | 0 1 16456 10763361 1073758336 38147070625 ...
5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ...
...
Columns 0..10 are
A000007,
A000012,
A047937,
A047938,
A047939,
A047940,
A047941,
A047942,
A047943,
A047944,
A047945.
-
{{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Nov 30 2023 *)
-
T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4
A054772
Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones, up to rotational symmetry.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 22, 34, 34, 22, 10, 3, 1, 1, 4, 32, 140, 464, 1092, 2016, 2860, 3238, 2860, 2016, 1092, 464, 140, 32, 4, 1, 1, 7, 78, 578, 3182, 13302, 44330, 120230, 270525, 510875, 817388, 1114548, 1300316, 1300316, 1114548, 817388
Offset: 0
[1],[1,1],[1,1,2,1,1],[1,3,10,22,34,34,22,10,3,1],...;
There are 10 inequivalent 3 X 3 binary matrices with 2 ones, up to rotational symmetry:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[0 1 1] [1 0 1] [1 1 0] [0 1 0] [1 0 0]
-------
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1]
[0 1 0] [0 1 0] [1 0 0] [1 0 1] [0 0 0]
[0 0 1] [0 1 0] [0 0 1] [0 0 0] [1 0 0].
- reformatted. _Wolfdieter Lang_, Oct 01 2016
See a remark above: use o for 0 and + for 1.
n=3: Cycle index G(3) = s[1]*(s[1]^8 + s[2]^4 + 2*s[4]^2)/4. C(3,x) = (1+x)*((1+x)^8 + (1+x^2)^4 + 2*(1+x^4)^2)/4 = 1 + 3*x + 10*x^2 + 22*x^3 + 34*x^4 + 34*x^5 + 22*x^6 + 10*x^7 + 3*x^8 + x^9. - _Wolfdieter Lang_, Oct 01 2016
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6).
A047938
Number of ways to label points of an n X n grid with 3 colors, up to rotational symmetry.
Original entry on oeis.org
1, 3, 24, 4995, 10763361, 211822552035, 37523658921114744, 59824832307866205347043, 858420955073128584419531008641, 110856622060759442496180656754310346403, 128844380183002832759115461915902241562318377784, 1347757724935823407809884872163997148505019182125807296675
Offset: 0
See
A068253 for number of proper colorings.
A334616
Number of 2-colorings of an n X n X n grid, up to rotational symmetry.
Original entry on oeis.org
2, 23, 5605504, 768614338020786176, 1772303994379887844373479205703254016, 4388012152856549445746584486819723041078276071004502223505850368, 746581580725934736852480760189481426040548499078234470565449222456544381939194522144498021170453413888
Offset: 1
a(2)=23 from:
00 00
00 00
------------------------------------------
10 00
00 00
------------------------------------------
11 00 10 00 10 01 10 00
00 00 01 00 00 00 00 01
------------------------------------------
11 00 11 00 01 10
10 00 00 10 10 00
------------------------------------------
11 00 11 00 01 10 11 00 11 10
11 00 10 01 10 01 00 11 10 00
------------------------------------------
00 11 00 11 10 01
01 11 11 01 01 11
------------------------------------------
00 11 01 11 01 10 01 11
11 11 10 11 11 11 11 10
------------------------------------------
01 11
11 11
------------------------------------------
11 11
11 11
------------------------------------------
An example for the 2-coloring of the 3 X 3 X 3 grid can be written as:
110 000 111
100 000 111
100 000 111
This coloring is equivalent to:
111 000 111
001 000 111
000 000 111
because you can get this configuration by rotating the first coloring by 90 degrees.
But it is different from:
011 000 111
001 000 111
001 000 111
because reflections are not considered.
This is the three-dimensional version of
A047937.
A047939
Number of 4-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 4, 70, 65824, 1073758336, 281474993496064, 1180591620734591303680, 79228162514264619068554215424, 85070591730234615870455337878516924416, 1461501637330902918203686041642102636484130504704, 401734511064747568885490523085607563280607806359022338048000
Offset: 0
A047940
Number of 5-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 5, 165, 489125, 38147070625, 74505806274453125, 3637978807092666626953125, 4440892098500626236200333251953125, 135525271560688054250937420874834136962890625, 103397576569128459358926086520114040467888355255126953125
Offset: 0
A047941
Number of 6-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 6, 336, 2521476, 705277897416, 7107572010747738816, 2578606199622659276537193216, 33678386561031835867238388699701784576, 15835071665743319426540573726368249140484891508736, 268034865369025581797148715934176748584236925114472848300179456
Offset: 0
A047942
Number of 7-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 7, 616, 10092775, 8308234084801, 335267154940213889575, 662932711464913775048175499816, 64230894380264719522488136461023341060807, 304940121908958925034643465916849873749900601574419201, 70938377295002676956115265690779190293441720530070400876280330568007
Offset: 0
A047943
Number of 8-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 8, 1044, 33562880, 70368748374016, 9444732965876730429440, 81129638414606686199388699623424, 44601490397061246283080881278262737180295168, 1569275433846670190958947355821723644654155086251882971136
Offset: 0
A047944
Number of 9-colorings of an n X n grid, up to rotational symmetry.
Original entry on oeis.org
1, 9, 1665, 96870249, 463255057977921, 179474496923598616041129, 5632099886234793640483695986653185, 14316042242555870306568544190208626253583093449, 2947546144434645792880218215353988087374626027116634833972481
Offset: 0
Showing 1-10 of 14 results.
Comments