cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343095 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 24, 140, 1, 0, 1, 5, 70, 4995, 16456, 1, 0, 1, 6, 165, 65824, 10763361, 8390720, 1, 0, 1, 7, 336, 489125, 1073758336, 211822552035, 17179934976, 1, 0, 1, 8, 616, 2521476, 38147070625, 281474993496064, 37523658921114744, 140737496748032, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Array begins:
====================================================================
n\k | 0 1       2            3               4                 5
----+---------------------------------------------------------------
  0 | 1 1       1            1               1                 1 ...
  1 | 0 1       2            3               4                 5 ...
  2 | 0 1       6           24              70               165 ...
  3 | 0 1     140         4995           65824            489125 ...
  4 | 0 1   16456     10763361      1073758336       38147070625 ...
  5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    {{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Nov 30 2023 *)
  • PARI
    T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4

Formula

T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2))/4.

A047937 Number of 2-colorings of an n X n grid, up to rotational symmetry.

Original entry on oeis.org

1, 2, 6, 140, 16456, 8390720, 17179934976, 140737496748032, 4611686019501162496, 604462909807864344215552, 316912650057057631849169289216, 664613997892457937028364283517337600, 5575186299632655785385110159782842147536896, 187072209578355573530071668259090783437390809661440
Offset: 0

Views

Author

Keywords

Comments

Cycle index = 1/4(s_1^(n^2)+ 2 s_4^floor(n^2/4)s_1^(n mod 2)+s_2^floor(n^2/2)s_1^(n mod 2)). - Geoffrey Critzer, Oct 28 2011

Examples

			a(2)=6 from
00 10 11 10 11 11
00 00 00 01 10 11
		

Crossrefs

Column k=2 of A343095.
Cf. A054247.

Programs

  • Mathematica
    Table[(2^(n^2)+2*2^Floor[n^2/4]*2^Mod[n,2]+2^Floor[n^2/2]*2^Mod[n,2])/4,{n,0,10}]  (* Geoffrey Critzer, Oct 28 2011 *)

Formula

a(n) = (m^(n^2) + 2*m^((n^2 + 3*(n mod 2))/4) + m^((n^2 + (n mod 2))/2))/4, with m = 2.

Extensions

Terms a(12) and beyond from Andrew Howroyd, Apr 14 2021

A047938 Number of ways to label points of an n X n grid with 3 colors, up to rotational symmetry.

Original entry on oeis.org

1, 3, 24, 4995, 10763361, 211822552035, 37523658921114744, 59824832307866205347043, 858420955073128584419531008641, 110856622060759442496180656754310346403, 128844380183002832759115461915902241562318377784, 1347757724935823407809884872163997148505019182125807296675
Offset: 0

Views

Author

Keywords

Comments

Labels of adjacent points need not be distinct.

Crossrefs

Column k=3 of A343095.
See A068253 for number of proper colorings.

Formula

a(n) = (m^(n^2) + 2 m^((n^2 + 3 (n mod 2))/4) + m^((n^2 + (n mod 2))/2))/4, with m = 3.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Apr 14 2021
Showing 1-3 of 3 results.