A047969 Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0
Examples
Array a begins: [n\k][0 1 2 3 4 5 6 ... [0] 1 1 1 1 1 1 1 ... [1] 1 3 7 15 31 63 ... [2] 1 5 19 65 211 ... [3] 1 7 37 175 ... ... Triangle T begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 3 1 3: 1 5 7 1 4: 1 7 19 15 1 5: 1 9 37 65 31 1 6: 1 11 61 175 211 63 1 7: 1 13 91 369 781 665 127 1 8: 1 15 127 671 2101 3367 2059 255 1 9: 1 17 169 1105 4651 11529 14197 6305 511 1 10: 1 19 217 1695 9031 31031 61741 58975 19171 1023 1 ... - _Wolfdieter Lang_, May 07 2021
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- A. Blecher, C. Brennan, A. Knopfmacher and Helmut Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
- Eric Weisstein's World of Mathematics, Nexus Number
Crossrefs
Cf. A047970.
Cf. A009998, A108553 (Hilbert transform of array of h-vectors of type D permutohedra), A145904, A145905.
Row n sequences of array a: A000012, A000225(k+1), A001047(k+1), A005061(k+1), A005060(k+1), A005062(k+1), A016169(k+1), A016177(k+1), A016185(k+1), A016189(k+1), A016195(k+1), A016197(k+1).
Column k sequences of array a: (nexus numbers): A000012, A005408, A003215, A005917(n+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Cf. A343237 (row reversed triangle).
Programs
-
Mathematica
Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
-
Maxima
T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */
Formula
From Vladimir Kruchinin: (Start)
O.g.f. of e.g.f of rows of array: ((1-x)*exp(y))/(1-x*exp(y))^2.
T(n,m) = Sum_{k=0..m} k!*(-1)^(m+k)*Stirling2(m,k)*C(n+k-1,n), T(n,0)=1.(End)
From Wolfdieter Lang, May 07 2021: (Start)
T(n,m) = a(n-m,m) = (n-m+1)^(m+1) - (n-m)^(m+1), n >= 0, m = 0, 1,..., n.
O.g.f. column k of the array: polylog(-(k+1), x)*(1-x)/x. See the Peter Bala comment above, and the Eulerian triangle A008292 formula by Vladeta Jovovic, Sep 02 2002.
E.g.f. of e.g.f. of row of the array: exp(y)*(1 + x*(exp(y) - 1))*exp(x*exp(y)).
O.g.f. of triangle's exponential row polynomials R(n, y) = Sum_{m=0} T(n, m)*(y^m)/m!: G(x, y) = exp(x*y)*(1 - x)/(1 - x*exp(x*y))^2. (End)
Comments