cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048098 Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195
Offset: 1

Views

Author

Keywords

Comments

A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011
This set (say S) has density d(S) = 1-log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density: let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = Product_{p<=x} (1 - 1/p)*Sum_{k in A(x)} 1/k. If lim_{x->infinity} m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002

Crossrefs

Set union of A063539 and A001248.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Haskell
    a048098 n = a048098_list !! (n-1)
    a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x]
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)
  • PARI
    print1(1, ", ");for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))
    
  • Python
    from sympy import factorint
    def ok(n):
        return n == 1 if n < 2 else max(factorint(n))**2 <= n
    print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A048098(n):
        def f(x): return int(n+sum(primepi(x//i)-primepi(i) for i in range(1,isqrt(x)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Sep 01 2024

Extensions

More terms from James Sellers, Apr 22 2000
Edited by Charles R Greathouse IV, Nov 08 2010