A048098 Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.
1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195
Offset: 1
Links
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 1..10000 (first 1000 terms computed by T. D. Noe)
- H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. 15 (1951), pp. 19-24.
- Eric Weisstein's World of Mathematics, Greatest Prime Factor
- Eric Weisstein's World of Mathematics, Round Number
Crossrefs
Programs
-
Haskell
a048098 n = a048098_list !! (n-1) a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x] -- Reinhard Zumkeller, Oct 12 2011
-
Mathematica
gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)
-
PARI
print1(1, ", ");for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))
-
Python
from sympy import factorint def ok(n): return n == 1 if n < 2 else max(factorint(n))**2 <= n print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021
-
Python
from math import isqrt from sympy import primepi def A048098(n): def f(x): return int(n+sum(primepi(x//i)-primepi(i) for i in range(1,isqrt(x)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Sep 01 2024
Extensions
More terms from James Sellers, Apr 22 2000
Edited by Charles R Greathouse IV, Nov 08 2010
Comments