A048103 Numbers not divisible by p^p for any prime p.
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
Offset: 1
Examples
6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not. 625 = 5^4 is present because it is not divisible by 5^5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Complement: A100716.
Positions of 0's in A129251, A342023, A376418, positions of 1's in A327936, A342007, A359550 (characteristic function).
Cf. A048102, A048104, A051674 (p^p), A054743, A054744, A377982 (a left inverse, partial sums of char. fun, see also A328402).
Programs
-
Haskell
a048103 n = a048103_list !! (n-1) a048103_list = filter (\x -> and $ zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..] -- Reinhard Zumkeller, Apr 28 2012
-
Mathematica
{1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
-
PARI
isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,1] <= f[i,2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
-
PARI
A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ (A359550 is the characteristic function for A048103) - Antti Karttunen, Nov 18 2024
-
Python
from itertools import count, islice from sympy import factorint def A048103_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:all(map(lambda d:d[1]
A048103_list = list(islice(A048103_gen(),30)) # Chai Wah Wu, Jan 05 2023 -
Scheme
;; With Antti Karttunen's IntSeq-library. (define A048103 (ZERO-POS 1 1 A129251)) ;; Antti Karttunen, Aug 18 2016
Formula
a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. - Charles R Greathouse IV, Jan 25 2012
For n >= 1, A377982(a(n)) = n. - Antti Karttunen, Nov 18 2024
Extensions
More terms from James Sellers, Apr 22 2000
Comments