cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048153 a(n) = Sum_{k=1..n} (k^2 mod n).

Original entry on oeis.org

0, 1, 2, 2, 10, 13, 14, 12, 24, 45, 44, 38, 78, 77, 70, 56, 136, 129, 152, 130, 182, 209, 184, 148, 250, 325, 288, 294, 406, 365, 372, 304, 484, 561, 490, 402, 666, 665, 572, 540, 820, 805, 860, 726, 840, 897, 846, 680, 980, 1125, 1156, 1170, 1378, 1305, 1210
Offset: 1

Views

Author

Keywords

Comments

See A048152 for the array T[n,k] = k^2 mod n.
Starting with a(2)=1 each 4th term is odd: a(n=2+4*k) = 1, 13, 45, 77, 129, 209, 325, 365, ... - Zak Seidov, Apr 22 2009
Positions of squares in A048153: 1, 2, 33, 51, 69, 105, 195, 250, 294, 1250, 4913, 9583, 13778, 48778, 65603, 83521.
Corresponding values of squares are: {0, 1, 22, 34, 46, 70, 130, 175, 203, 875, 3468, 6734, 9711, 34481, 46308, 58956}^2 = {0, 1, 484, 1156, 2116, 4900, 16900, 30625, 41209, 765625, 12027024, 45346756, 94303521, 1188939361, 2144430864, 3475809936}. - Zak Seidov, Nov 02 2011
For n > 1 also row sums of A060036. - Reinhard Zumkeller, Apr 29 2013
Conjecture: a(n) <= (n^2-1)/2. - Aspen A.M. Meissner, Mar 06 2025

Examples

			a(5) = 1^2 + 2^2 + (3^2 mod 5) + (4^2 mod 5) + (5^2 mod 5) = 1 + 4 + 4 + 1 + 0 = 10. (It is easily seen that the last term, n^2 mod n, is always zero and would not need to be included.) - _M. F. Hasler_, Oct 21 2013
		

Crossrefs

Programs

Formula

a(n) == n*(n+1)*(2n+1)/6 (mod n). - Charles R Greathouse IV, Dec 28 2011
a(n) == n*(n-1)*(2n-1)/6 (mod n). - Chai Wah Wu, Jun 02 2024
a(n) mod n = A215573(n). - Alois P. Heinz, Jun 03 2024

Extensions

Definition made more explicit by M. F. Hasler, Oct 21 2013