cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A365658 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 4, 1, 1, 3, 0, 1, 5, 1, 0, 3, 0, 3, 0, 8, 1, 1, 3, 2, 2, 1, 2, 10, 1, 0, 5, 0, 3, 0, 5, 0, 16, 1, 1, 4, 0, 6, 2, 4, 2, 2, 20, 1, 0, 5, 0, 5, 0, 8, 0, 6, 0, 31, 1, 1, 6, 2, 3, 6, 6, 1, 4, 4, 4, 39, 1, 0, 6, 0, 6, 0, 12, 0, 8, 0, 13, 0, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Conjecture: Positions of strictly positive rows are given by A048166.

Examples

			Triangle begins:
  1
  1  1
  1  0  2
  1  1  1  2
  1  0  2  0  4
  1  1  3  0  1  5
  1  0  3  0  3  0  8
  1  1  3  2  2  1  2 10
  1  0  5  0  3  0  5  0 16
  1  1  4  0  6  2  4  2  2 20
  1  0  5  0  5  0  8  0  6  0 31
  1  1  6  2  3  6  6  1  4  4  4 39
  1  0  6  0  6  0 12  0  8  0 13  0 55
  1  1  6  0  6  3 16  3  5  3  7  8  5 71
		

Crossrefs

Row sums are A000041.
Last column n = k is A126796.
Column k = 3 appears to be A137719.
This is the triangle for the rank statistic A299701.
Central column n = 2k is A365660.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,10},{k,n}]

A023534 Numbers k such that the largest power of 2 dividing k equals 2^omega(k).

Original entry on oeis.org

1, 2, 12, 20, 28, 36, 44, 52, 68, 76, 92, 100, 108, 116, 120, 124, 148, 164, 168, 172, 188, 196, 212, 236, 244, 264, 268, 280, 284, 292, 312, 316, 324, 332, 356, 360, 388, 404, 408, 412, 428, 436, 440, 452, 456, 484, 500, 504, 508, 520, 524, 548, 552, 556
Offset: 1

Views

Author

Benoit Cloitre, Sep 04 2002

Keywords

Comments

That is, numbers k such that A001221(k) is equal to A007814(k), where A001221(k) = omega(k) is the number of distinct primes dividing k, and A007814(k) is the exponent of the highest power of 2 dividing k.
Numbers k that are unitarily divisible by the number of unitary divisors of k (A034444), i.e., numbers k such that A034444(k) is a unitary divisor of k. Subsequence of A048166. - Amiram Eldar, Aug 15 2025

Examples

			omega(12) = 2 and 4 = 2^2 is the largest power of 2 dividing 12, hence 12 is in the sequence.
		

Crossrefs

Cf. A039700, A001221 (omega), A007814 (2-adic valuation), A034444, A048166.

Programs

  • Mathematica
    Select[Range[600],IntegerExponent[#,2]==PrimeNu[#]&] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    isok(n) = omega(n) == valuation(n, 2); \\ Michel Marcus, Apr 16 2015
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import primenu
    def A023534_gen(startvalue=1): # generator of terms
        return filter(lambda n:(~n & n-1).bit_length() == primenu(n),count(max(startvalue,1)))
    A023534_list = list(islice(A023534_gen(),30)) # Chai Wah Wu, Jul 05 2022

A048169 n is divisible by the cube of the number of unitary divisors of n (A034444).

Original entry on oeis.org

1, 8, 16, 32, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 1024, 1088, 1152, 1216, 1280, 1408, 1472, 1536, 1600, 1664, 1728, 1792, 1856, 1984, 2048, 2176, 2304, 2368, 2432, 2560, 2624, 2752, 2816, 2944, 3008, 3072, 3136, 3200, 3328
Offset: 1

Views

Author

Keywords

Examples

			a[ 54 ]=x=3968=128*31 has 4 unitary divisors: {1,3968,128,31} and the cube, 64, divides 3968: q=3968/64=62.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3400], Divisible[#, 8^PrimeNu[#]] &] (* Amiram Eldar, Aug 05 2019 *)

A048481 a(n) = T(0,n) + T(1,n-1) + ... + T(n,0), array T given by A048472.

Original entry on oeis.org

1, 3, 9, 27, 77, 207, 529, 1299, 3093, 7191, 16409, 36891, 81949, 180255, 393249, 852003, 1835045, 3932199, 8388649, 17825835, 37748781, 79691823, 167772209, 352321587, 738197557, 1543503927, 3221225529, 6710886459, 13958643773, 28991029311, 60129542209
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A048495.

Programs

  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{1,3,9,27},40] (* Harvey P. Dale, Aug 13 2015 *)
  • PARI
    Vec((4*x^2-3*x+1)/((x-1)^2*(2*x-1)^2) + O(x^100)) \\ Colin Barker, Dec 04 2014

Formula

Row sums of triangle A134397. Also, binomial transform of A048166. - Gary W. Adamson, Oct 23 2007
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4). - Colin Barker, Dec 04 2014
G.f.: (4*x^2-3*x+1) / ((x-1)^2*(2*x-1)^2). - Colin Barker, Dec 04 2014
a(n) = 2^(n+1)*(n-2) + 2*n + 5. - Christian Krause, Oct 31 2023

Extensions

Corrected by T. D. Noe, Nov 08 2006

A351851 Numbers that are divisible by the number of their divisors over the Gaussian integers.

Original entry on oeis.org

1, 6, 9, 18, 20, 56, 126, 168, 180, 198, 280, 342, 352, 414, 432, 441, 486, 504, 558, 616, 625, 728, 774, 832, 846, 952, 1056, 1062, 1064, 1089, 1176, 1206, 1278, 1288, 1422, 1494, 1512, 1624, 1736, 1760, 1848, 1854, 1920, 1926, 2025, 2072, 2160, 2286, 2296, 2358
Offset: 1

Views

Author

Amiram Eldar, Feb 22 2022

Keywords

Comments

Numbers k such that A062327(k) | k.
All the odd terms are squares.

Examples

			6 is a term since it is divisible by A062327(6) = 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2400], Divisible[#, DivisorSigma[0, #, GaussianIntegers -> True]] &]

A351853 Numbers that are divisible by the number of their divisors over the Eisenstein integers.

Original entry on oeis.org

1, 2, 3, 6, 8, 24, 40, 80, 81, 88, 120, 128, 136, 162, 180, 184, 225, 232, 240, 264, 324, 328, 360, 376, 384, 408, 424, 448, 450, 472, 552, 560, 568, 625, 640, 648, 664, 696, 712, 756, 808, 856, 880, 896, 900, 904, 984, 1040, 1048, 1096, 1128, 1192, 1250, 1272
Offset: 1

Views

Author

Amiram Eldar, Feb 22 2022

Keywords

Comments

Numbers k such that A319442(k) | k.
All the odd terms are squares or numbers of the form 3 times a square.

Examples

			6 is a term since it is divisible by A319442(6) = 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := Divisible[n, eisNumDiv[n]]; Select[Range[1000], q]

A048167 Integer quotients of numbers k divisible by the number of unitary divisors of k (A034444).

Original entry on oeis.org

1, 1, 2, 4, 3, 8, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 32, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 15, 31, 64, 34, 36, 37, 38, 40, 41, 21, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 30, 61, 62, 128, 33, 67, 68, 35, 71, 72, 73, 74, 76, 39, 79, 80, 81, 82, 83, 42
Offset: 1

Views

Author

Keywords

Examples

			1008 = 2*2*2*3*3*7 has 8 unitary divisors {1,1008,7,144,9,112,16,63}, 8 divides 1008 and the quotient is 126, a term in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := n / 2^PrimeNu[n]; f /@ Select[Range[340], IntegerQ[f[#]] &] (* Amiram Eldar, Jul 16 2019 *)

Formula

a(n) = A048166(n)/A034444(A048166(n)). - Amiram Eldar, Jul 16 2019

A048168 n is divisible by the square of the number of unitary divisors of n (A034444).

Original entry on oeis.org

1, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 256, 272, 288, 304, 320, 352, 368, 384, 400, 416, 432, 448, 464, 496, 512, 544, 576, 592, 608, 640, 656, 688, 704, 736, 752, 768, 784, 800, 832, 848, 864, 896, 928, 944, 960, 976, 992
Offset: 1

Views

Author

Keywords

Examples

			x=2032=16*127 has 4 unitary divisors: {1,16,127,2032} and ud[ x ]^2=16 divides 2032.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], Divisible[#, 4^PrimeNu[#]] &] (* Amiram Eldar, Aug 05 2019 *)

A387056 Numbers k that are divisible by the number of infinitary divisors of k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 68, 72, 76, 80, 88, 92, 96, 100, 104, 112, 116, 124, 128, 136, 144, 148, 152, 160, 164, 172, 176, 184, 188, 192, 196, 200, 208, 212, 224, 232, 236, 240, 244, 248, 256, 268, 272, 284, 288, 292, 296
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2025

Keywords

Comments

First differs from A048166 at n = 27: A048166(27) = 108 is not a term of this sequence.
This sequence is infinite. For example, if p is a prime, then 8*p is a term.

Crossrefs

A387057 is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ f @@@ FactorInteger[n]; q[k_] := Divisible[k, id[k]]; Select[Range[300], q]
  • PARI
    isok(k) = !(k % vecprod(apply(x -> 2^hammingweight(x), factor(k)[, 2])));

A048170 n is divisible by the 4th power of the number of unitary divisors of n (A034444).

Original entry on oeis.org

1, 16, 32, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 4096, 4352, 4608, 4864, 5120, 5632, 5888, 6144, 6400, 6656, 6912, 7168, 7424, 7936, 8192, 8704, 9216, 9472, 9728, 10240, 10496, 11008, 11264, 11776
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[12000], Divisible[#, 16^PrimeNu[#]] &] (* Amiram Eldar, Aug 05 2019 *)
Showing 1-10 of 11 results. Next