cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A058350 Duplicate of A048174.

Original entry on oeis.org

1, 1, 7, 73, 1051, 19381, 436087, 11585953, 354981571, 12322179901, 477938035807, 20485584143113, 961567521142411, 49054912287659461, 2702571588828034567, 159911968233095867953, 10114120854154243738771, 680943323845807848142861
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2000

Keywords

A048172 Number of labeled series-parallel graphs with n edges.

Original entry on oeis.org

1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1

Views

Author

Keywords

Comments

Labeled N-free posets. - Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

References

  • Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.

Crossrefs

Cf. A000112 (unlabeled posets), A001035 (labeled posets), A003430 (unlabeled analog).

Programs

  • Maple
    with(gfun):
    f := series((ln(1+x)-x^2/(1+x)), x, 21):
    egf := seriestoseries(f, 'revogf'):
    seriestolist(egf, 'Laplace');
  • Mathematica
    lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
    m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
  • Maxima
    h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
  • PARI
    x='x+O('x^55);
    s=-log(1-x)-x^2/(1-x);
    A048174=Vec(serlaplace(serreverse(s)));
    t=x+2*(1-cosh(x));
    A058349=Vec(serlaplace(serreverse(t)));
    A048172=A048174+A058349;  A048172[1]-=1;
    A048172 /* Joerg Arndt, Feb 04 2011 */
    

Formula

a(n) = A058349(n) + A048174(n).
a(n) = A058349(n) + A058350(n) (n>=2).
Reference (by Ronald C. Read) gives generating functions.
E.g.f. is reversion of log(1+x)-x^2/(1+x).
a(n)=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1), h(n,k)=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1), n>0. - Vladimir Kruchinin, Sep 08 2010
a(n) ~ sqrt((5+3*sqrt(5))/10) * n^(n-1) / (exp(n) * (2 - sqrt(5) + log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Feb 25 2014

Extensions

More terms from Joerg Arndt, Feb 04 2011

A058349 Number of connected labeled series-parallel posets on n nodes.

Original entry on oeis.org

1, 2, 12, 122, 1740, 31922, 715932, 18978122, 580513260, 20125554242, 779832497532, 33398722757402, 1566656717322060, 79879485803841362, 4398701789915269212, 260166428897541369962, 16449181879032096013740, 1107112451498156565581282, 79030557433744270179981372
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2000

Keywords

Comments

Also, number of labeled blobs with n edges.

References

  • R. C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, preprint, Sept. 26, 1991.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39, page 133, g(n).

Crossrefs

A053554(n) = a(n) + A058350(n) (n>=2).

Programs

  • Maple
    (continue from A053554) t1 := log(1+EGF053554): t2 := series(t1,x,30); SERIESTOLISTMULT(t2);
  • Mathematica
    Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, 19}], y], y], 1]* Range[19]! (* Jean-François Alcover, Sep 21 2011, after g.f. *)
  • Maxima
    a(n):=if n=1 then 1 else (n-1)!*sum(binomial(n+k-1,n-1)*sum(binomial(k,j)*((sum((binomial(j,l)*((-1)^(n-l+j-1)+1)*sum(binomial(j-l,r)*2^(j-l-r-1)*(-1)^(r-j)*sum((r-2*i)^(n-l+j-1)*binomial(r,i),i,0,r),r,1,j-l))/(n-l+j-1)!,l,0,j-1))),j,1,k),k,1,n-1); /* Vladimir Kruchinin, Feb 19 2012 */
  • PARI
    /* Joerg Arndt, Feb 04 2011 */
    x='x+O('x^55); t=x+2*(1-cosh(x));
    Vec(serlaplace(serreverse(t))) /* show terms */
    

Formula

Read (1991) reference gives generating functions (see PARI code for one example).
A048172(n) = a(n)+A048174(n), n>1.
a(n) = (n-1)!*sum(k=1..n-1, binomial(n+k-1,n-1)*sum(j=1..k, binomial(k,j)*((sum(l=0..j-1, (binomial(j,l)*((-1)^(n-l+j-1)+1)*sum(r=1..j-l, binomial(j-l,r)*2^(j-l-r-1)*(-1)^(r-j)*sum(i=0..r, (r-2*i)^(n-l+j-1)*binomial(r,i))))/(n-l+j-1)!))))), n>1, a(1)=1. - Vladimir Kruchinin, Feb 19 2012
a(n) ~ n^(n-1) / (5^(1/4)*exp(n)*(2-sqrt(5)+log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Mar 09 2014

Extensions

More terms from Joerg Arndt, Feb 04 2011

A339300 Number of essentially parallel oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 0, 6, 36, 540, 8400, 169680, 3966480, 107518320, 3295283040, 112888369440, 4272403544640, 177061349424960, 7974538914101760, 387840385867334400, 20257533315635616000, 1130954856127948051200, 67208532822729871372800, 4235759061057115720128000
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2020

Keywords

Comments

See A339301 for additional details.

Crossrefs

A048174 is the case with multiple edges in parallel allowed.
A058379 is the case that order is not significant in series configurations.
Cf. A339289 (unlabeled), A339299, A339301.

Programs

  • PARI
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(1-1/(1+p)))}

Formula

E.g.f. (1 + x)*exp(S(x)) - S(x) - 1 where S(x) is the e.g.f. of A339299.
E.g.f.: B(x)/(1 + B(x)) where B(x) is the e.g.f. of A339301.
E.g.f.: B(log(1+x)) where B(x) is the e.g.f. of A048174.
Showing 1-4 of 4 results.