A048173 Duplicate of A058349.
1, 2, 12, 122, 1740, 31922, 715932, 18978122, 580513260
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
with(gfun): f := series((ln(1+x)-x^2/(1+x)), x, 21): egf := seriestoseries(f, 'revogf'): seriestolist(egf, 'Laplace');
lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *) m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
x='x+O('x^55); s=-log(1-x)-x^2/(1-x); A048174=Vec(serlaplace(serreverse(s))); t=x+2*(1-cosh(x)); A058349=Vec(serlaplace(serreverse(t))); A048172=A048174+A058349; A048172[1]-=1; A048172 /* Joerg Arndt, Feb 04 2011 */
with(gfun): f := series(ln(1+x)-x^2/(1+x), x, 30): egf := seriestoseries(f, 'revogf'): t := series(egf/(1+egf), x, 21): seriestolist(t, 'Laplace');
lim = 20; Drop[ CoefficientList[ InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x), {x, 0, lim}], y], y], 1]*Range[lim]! (* Jean-François Alcover, Sep 21 2011, after g.f. *) max = 18; S053554 = InverseSeries[ Series[ Log[1+x] - x^2/(1+x), {x, 0, max}], x]; Drop[ CoefficientList[ Series[ S053554 / (1+S053554), {x, 0, max}], x]* Range[0, max]!, 1] (* Jean-François Alcover, Nov 29 2011, after Maple *)
a(n):=if n=1 then 1 else (sum((n+k-1)!*sum((-1)^(j)/(k-j)!*((sum(sum((binomial(-l+i-1,l-1)*(-1)^(n-i-1)*stirling1(n+j-i-1,j-l))/(l!*(n+j-i-1)!),i,2*l,n+l-1),l,1,j))+((-1)^(n-1)*stirling1(n+j-1,j))/(n+j-1)!),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Feb 19 2012 */
x='x+O('x^66); s=serreverse(log(1+x)-x^2/(1+x)); Vec(serlaplace(s/(1+s))) \\ Joerg Arndt, Mar 11 2014
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(p-p/(1+p)), -n)}
Comments