cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048285 Number of Dyck paths of length 2n with nondecreasing peaks.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 126, 316, 800, 2040, 5230, 13464, 34773, 90035, 233590, 607011, 1579438, 4114014, 10725109, 27979704, 73035818, 190737623, 498320800, 1302341411, 3404552915, 8902154847, 23281653957, 60897957049, 159312797657
Offset: 0

Views

Author

Olivier Roques (roques(AT)labri.u-bordeaux.fr)

Keywords

Comments

The name refers to weakly increasing peaks. The case of strictly increasing peaks is counted by A008930. - David Callan, Feb 18 2004
a(n) ~ 0.11997*[(3+sqrt(5))/2]^n (Theorem 2 of the Penaud-Roques paper). - Emeric Deutsch, Mar 05 2008
Row sums of A138155. - Emeric Deutsch, Mar 05 2008
For a constant 0.1199765127480778967304984... see A239528. - Vaclav Kotesovec, Mar 21 2014

Examples

			a(3)=4 because we have UDUDUD, UDUUDD, UUDUDD and UUUDDD, where U=(1,1) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    g:= 1+sum((-1)^n*z^(2*n+1)*(1-z)/(product((1-z)*(1-z^i)-z,i=1..n+1)), n=0..40): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=0..30); # Emeric Deutsch, Mar 05 2008
    # second Maple program:
    b:= proc(x, y, k, t) option remember; `if`(x=0, 1, `if`(y>0,
          `if`(t=1 and y>k, 0, b(x-1, y-1, `if`(t=1, min(k, y),
             k), 0)), 0) +`if`(y b(2*n, 0, n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 13 2017
    # third Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          binomial(i, j)*add(b(n-2-(i-j)*2-2*t, i-j+t),
          t=0..n/2+j-i-1), j=0..i))
        end:
    a:= n-> b(2*n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 13 2017
  • Mathematica
    Table[SeriesCoefficient[Sum[(-1)^k*x^(2*k+1)*(1-x)/Product[(1-x)*(1-x^i)-x,{i,1,k+1}],{k,0,n}],{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Mar 21 2014 *)

Formula

G.f.: 1 + Sum_{n>=0} ((-1)^n x^{2n+1}(1-x)) / (Product_{i=1...n+1} ((1-x)(1-x^i)-x)).
Conjectural g.f.: Sum_{n>=0} (x*(1 - x))^n/( Product_{i=2..n+1} (1 - 2*x + x^i) ) (checked up to x^50). - Peter Bala, Mar 31 2017

Extensions

More terms from Emeric Deutsch, Mar 05 2008
a(0)=1 prepended by Alois P. Heinz, Jan 31 2017