A048291 Number of {0,1} n X n matrices with no zero rows or columns.
1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0
Examples
a(2) = 7: |01| |01| |10| |10| |11| |11| |11| |10| |11| |01| |11| |01| |10| |11|.
References
- Brendan McKay, Posting to sci.math.research, Jun 14 1999.
Links
- T. D. Noe, Table of n, a(n) for n = 0..32
- H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
- David Dolžan and Gabriel Verret, The automorphism group of the zero-divisor digraph of matrices over an antiring, arXiv:1908.04614 [math.AC], 2019.
- R. J. Mathar, The number of nXm matrices with at most k 1's in each row or column, (2014).
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Stefan Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
- R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Edge Cover.
Crossrefs
Programs
-
Maple
seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
-
Mathematica
Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
-
Python
import math f = math.factorial def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017
Formula
a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
From Vladeta Jovovic, Feb 23 2008: (Start)
E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2014
a(n) = Sum_{s=0..n-1} binomial(n,s)*(-1)^s*A092477(n,n-s), n > 0. - R. J. Mathar, Nov 18 2023
Comments