A048344 a(n) * a(n)_reversed is a palindrome (and a(n) is not palindromic).
12, 21, 102, 112, 122, 201, 211, 221, 1002, 1011, 1012, 1021, 1022, 1101, 1102, 1112, 1121, 1201, 1202, 1211, 2001, 2011, 2012, 2021, 2101, 2102, 2111, 2201, 10002, 10011, 10012, 10021, 10022, 10102, 10111, 10112, 10121, 10202, 10211, 11001
Offset: 1
Examples
E.g. 10021 * 12001 = 120262021 is a palindrome.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Patrick De Geest, Palindromic Products of Non Palindromic Integers and their Reversals
Programs
-
Haskell
a048344 n = a048344_list !! (n-1) a048344_list = filter f a029742_list where f x = a136522 (x * a004086 x) == 1 -- Reinhard Zumkeller, Oct 09 2011
-
Mathematica
palQ[n_]:=Module[{idn=IntegerDigits[n],ridn,idn2},ridn=Reverse[idn]; idn2 = IntegerDigits[ n FromDigits[ridn]];idn!=ridn&&idn2==Reverse[idn2]]; Select[ Range[11100],palQ] (* Harvey P. Dale, Nov 05 2011 *) Select[Range[12000],!PalindromeQ[#]&&PalindromeQ[# IntegerReverse[#]]&] (* Harvey P. Dale, Jul 10 2023 *)
-
Python
A048344_list = [] for n in range(1,10**5): s = str(n) s2 = str(n)[::-1] if s != s2: s3 = str(n*int(s2)) if s3 == s3[::-1]: A048344_list.append(n) # Chai Wah Wu, Sep 08 2014
Extensions
Offset corrected by Reinhard Zumkeller, Oct 09 2011
Comments