A048493 a(n) = (n+1)*2^n - n.
1, 3, 10, 29, 76, 187, 442, 1017, 2296, 5111, 11254, 24565, 53236, 114675, 245746, 524273, 1114096, 2359279, 4980718, 10485741, 22020076, 46137323, 96468970, 201326569, 419430376, 872415207, 1811939302, 3758096357, 7784628196, 16106127331, 33285996514
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Sunlet Graph
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Crossrefs
Cf. A058877.
Programs
-
Magma
[(n+1)*2^n-n: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
-
Mathematica
Table[(n + 1) 2^n - n, {n, 20}] (* Eric W. Weisstein, May 25 2017 *) Table[2^n + (2^n - 1) n, {n, 20}] (* Eric W. Weisstein, May 25 2017 *) LinearRecurrence[{6, -13, 12, -4}, {3, 10, 29, 76}, 20] (* Eric W. Weisstein, May 25 2017 *)
-
PARI
Vec(-(4*x^3-5*x^2+3*x-1)/((x-1)^2*(2*x-1)^2) + O(x^100)) \\ Colin Barker, Nov 26 2014
Formula
a(n) = (n+1)*2^n-n. - Vladeta Jovovic, Feb 28 2003
a(n) = 5*a(n-1)-7*a(n-2)-a(n-3)+8*a(n-4)-4*a(n-5). - Colin Barker, Nov 26 2014
G.f.: -(4*x^3-5*x^2+3*x-1) / ((x-1)^2*(2*x-1)^2). - Colin Barker, Nov 26 2014
Extensions
Description changed to more explicit formula by Eric W. Weisstein, May 25 2017
Comments