cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048612 Find smallest pair (x,y) such that x^2-y^2 = 11...1 (n times) = (10^n-1)/9; sequence gives value of y.

Original entry on oeis.org

0, 5, 17, 45, 115, 67, 2205, 2933, 166667, 44445, 245795, 6667, 132683733, 4444445, 2012917, 23767083, 2680575317, 666667, 555555555555555555, 83053525, 3263104267, 12488376483, 5555555555555555555555, 66666667, 2952525627555
Offset: 1

Views

Author

Keywords

Comments

Least solutions for 'Difference between two squares is a repunit of length n'.

Examples

			For n=2, 6^2 - 5^2 = 11.
		

References

  • David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, p. 119. ISBN 0-14-026149-4.

Crossrefs

Programs

  • Mathematica
    s = Flatten[Table[r = (10^i - 1)/9; d = Divisors[r]; p = d[[Length[d]/2]]; Solve[{x - y == p, x + y == r/p}, {y, x}], {i, 2, 56}]]; Prepend[Cases[s, Rule[y, n_] -> n], 0]
    Join[{0},Table[y/.Solve[{x>0,y>0,x^2-y^2==FromDigits[PadRight[{},n,1]]},{x,y},Integers][[1]],{n,2,30}]](* Harvey P. Dale, Jun 12 2018 *)
  • Python
    from sympy import divisors
    def A048612(n):
        d = divisors((10**n-1)//9)
        l = len(d)
        return (d[l//2]-d[(l-1)//2])//2 # Chai Wah Wu, Apr 05 2021

Formula

a(n) = (A033677((10^n-1)/9)-A033676((10^n-1)/9))/2. - Chai Wah Wu, Apr 05 2021

Extensions

Corrected and extended by Patrick De Geest, Jun 15 1999
More terms from Hans Havermann, Jul 02 2000
Offset corrected by Chai Wah Wu, Apr 05 2021