A048612 Find smallest pair (x,y) such that x^2-y^2 = 11...1 (n times) = (10^n-1)/9; sequence gives value of y.
0, 5, 17, 45, 115, 67, 2205, 2933, 166667, 44445, 245795, 6667, 132683733, 4444445, 2012917, 23767083, 2680575317, 666667, 555555555555555555, 83053525, 3263104267, 12488376483, 5555555555555555555555, 66666667, 2952525627555
Offset: 1
Examples
For n=2, 6^2 - 5^2 = 11.
References
- David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, p. 119. ISBN 0-14-026149-4.
Links
- H. Havermann, Repunit Square Differences (gives many more terms)
Programs
-
Mathematica
s = Flatten[Table[r = (10^i - 1)/9; d = Divisors[r]; p = d[[Length[d]/2]]; Solve[{x - y == p, x + y == r/p}, {y, x}], {i, 2, 56}]]; Prepend[Cases[s, Rule[y, n_] -> n], 0] Join[{0},Table[y/.Solve[{x>0,y>0,x^2-y^2==FromDigits[PadRight[{},n,1]]},{x,y},Integers][[1]],{n,2,30}]](* Harvey P. Dale, Jun 12 2018 *)
-
Python
from sympy import divisors def A048612(n): d = divisors((10**n-1)//9) l = len(d) return (d[l//2]-d[(l-1)//2])//2 # Chai Wah Wu, Apr 05 2021
Formula
Extensions
Corrected and extended by Patrick De Geest, Jun 15 1999
More terms from Hans Havermann, Jul 02 2000
Offset corrected by Chai Wah Wu, Apr 05 2021
Comments