cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A039668 Replaced by the pair of sequences A048611 and A048612.

Original entry on oeis.org

1, 0, 6, 5, 20, 17, 56, 45, 156, 115, 344, 85, 356, 125
Offset: 0

Views

Author

Keywords

A048611 Find smallest pair (x,y) such that x^2 - y^2 = 11...1 (n times) = (10^n-1)/9; sequence gives value of x.

Original entry on oeis.org

1, 6, 20, 56, 156, 340, 2444, 4440, 167000, 55556, 267444, 333400, 132687920, 5555556, 10731400, 40938800, 2682647040, 333334000, 555555555555555556, 3334367856, 11034444280, 35595935980, 5555555555555555555556
Offset: 1

Views

Author

Keywords

Comments

Least solutions for 'Difference between two squares is a repunit of length n'.

Examples

			For n=2, 6^2 - 5^2 = 11.
		

References

  • David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, p. 119. ISBN 0-14-026149-4.

Crossrefs

Programs

  • Mathematica
    s = Flatten[Table[r = (10^i - 1)/9; d = Divisors[r]; p = d[[Length[d]/2]]; Solve[{x - y == p, x + y == r/p}, {y, x}], {i, 2, 56}]]; Prepend[Cases[s, Rule[x, n_] -> n], 1]
  • Python
    from sympy import divisors
    def A048611(n):
        d = divisors((10**n-1)//9)
        l = len(d)
        return (d[l//2]+d[(l-1)//2])//2 # Chai Wah Wu, Apr 05 2021

Formula

a(n) = (A033677((10^n-1)/9)+A033676((10^n-1)/9))/2. - Chai Wah Wu, Apr 05 2021

Extensions

Corrected and extended by Patrick De Geest, Jun 15 1999
More terms from Hans Havermann, Jul 02 2000
Offset corrected by Chai Wah Wu, Apr 05 2021

A335598 Squares that remain squares when the repunit with the same number of digits is added.

Original entry on oeis.org

0, 25, 289, 2025, 13225, 100489, 198025, 319225, 466489, 4862025, 19758025, 42471289, 1975358025, 3199599225, 60415182025, 134885049289, 151192657225, 197531358025, 207612366025, 248956092025, 447136954489, 588186226489, 19753091358025, 31996727599225, 311995522926025, 1975308691358025
Offset: 1

Views

Author

Keywords

Examples

			0 is a term because 0 + 1 = 1. The result is another square.
25 is a term because 25 + 11 = 36. The result is another square.
289 is a term because 289 + 111 = 400. The result is another square.
		

Crossrefs

Programs

  • Maple
    f:= proc(d,q,m) local x,y;
    if d < q/d then return NULL fi;
    x:= ((d-q/d)/2)^2;
    if x >= 10^m and x < 10^(m+1) then x else NULL fi;
    end proc:
    R:= 0:
    for m from 1 to 20 do
      q:= (10^m-1)/9;
      V:= sort(convert(map(f, numtheory:-divisors(q),q,m-1),list));
      R:= R, op(V);
    od:
    R; # Robert Israel, Aug 21 2020
  • PARI
    lista(limit)={for(k=0, sqrtint(limit), my(t=k^2); if(issquare(t + (10^if(t, 1+logint(t,10), 1)-1)/9), print1(t, ", ")))}
    { lista(10^12) } \\ Andrew Howroyd, Aug 11 2020

Extensions

Name corrected by Robert Israel, Aug 26 2020
Showing 1-3 of 3 results.