A048693 Generalized Pellian with 2nd term equal to 6.
1, 6, 13, 32, 77, 186, 449, 1084, 2617, 6318, 15253, 36824, 88901, 214626, 518153, 1250932, 3020017, 7290966, 17601949, 42494864, 102591677, 247678218, 597948113, 1443574444, 3485097001, 8413768446
Offset: 0
Examples
a(n)=[ (5+sqrt(2))(1+sqrt(2))^n-(5-sqrt(2))(1-sqrt(2))^n ]/2*sqrt(2)
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,1)
Programs
-
Maple
with(combinat): a:=n->4*fibonacci(n-1,2)+fibonacci(n,2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008
-
Mathematica
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{5},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) LinearRecurrence[{2,1},{1,6},30] (* Harvey P. Dale, Mar 29 2013 *)
-
Maxima
a[0]:1$ a[1]:6$ a[n]:=2*a[n-1]+a[n-2]$ A048693(n):=a[n]$ makelist(A048693(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
Formula
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=6.
G.f.: (1+4*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
Comments