cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048693 Generalized Pellian with 2nd term equal to 6.

Original entry on oeis.org

1, 6, 13, 32, 77, 186, 449, 1084, 2617, 6318, 15253, 36824, 88901, 214626, 518153, 1250932, 3020017, 7290966, 17601949, 42494864, 102591677, 247678218, 597948113, 1443574444, 3485097001, 8413768446
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 2, 8, 4, 12, 8, 6, 8, 24, 12, 24, 8, 28, 6, 24, 16, 16, 24, 40, 12, ... (is this A175181?). - R. J. Mathar, Aug 10 2012

Examples

			a(n)=[ (5+sqrt(2))(1+sqrt(2))^n-(5-sqrt(2))(1-sqrt(2))^n ]/2*sqrt(2)
		

Crossrefs

Programs

  • Maple
    with(combinat): a:=n->4*fibonacci(n-1,2)+fibonacci(n,2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{5},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{2,1},{1,6},30] (* Harvey P. Dale, Mar 29 2013 *)
  • Maxima
    a[0]:1$
    a[1]:6$
    a[n]:=2*a[n-1]+a[n-2]$
    A048693(n):=a[n]$
    makelist(A048693(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=6.
G.f.: (1+4*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
a(n) = 4*A000129(n) + A000129(n+1). - R. J. Mathar, Aug 10 2012