A048771 Partial sums of A048695.
1, 9, 26, 68, 169, 413, 1002, 2424, 5857, 14145, 34154, 82460, 199081, 480629, 1160346, 2801328, 6763009, 16327353, 39417722, 95162804, 229743337, 554649485, 1339042314, 3232734120, 7804510561, 18841755249, 45488021066, 109817797388, 265123615849
Offset: 0
Examples
a(n)=[ {(8+(9/2)*sqrt(2))(1+sqrt(2))^n -(8-(9/2)*sqrt(2))(1-sqrt(2))^n}/ 2*sqrt(2) ]-7/2.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1)
Programs
-
Mathematica
Table[6*Fibonacci[n, 2] + Fibonacci[n+1, 2], {n, 0, 22}] // Accumulate (* Jean-François Alcover, Mar 25 2013 *) Accumulate[LinearRecurrence[{2,1},{1,8},40]] (* or *) LinearRecurrence[ {3,-1,-1},{1,9,26},40] (* Harvey P. Dale, May 01 2013 *)
Formula
a(n)=2*a(n-1)+a(n-1)+7; a(0)=1, a(1)=9.
a(0)=1, a(1)=9, a(2)=26, a(n)=3*a(n-1)-a(n-2)-a(n-3). - Harvey P. Dale, May 01 2013
Extensions
More terms from Harvey P. Dale, May 01 2013