A048724 Write n and 2n in binary and add them mod 2.
0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33, 96, 99, 102, 101, 108, 111, 106, 105, 120, 123, 126, 125, 116, 119, 114, 113, 80, 83, 86, 85, 92, 95, 90, 89, 72, 75, 78, 77, 68, 71, 66, 65, 192
Offset: 0
Examples
12 = 1100 in binary, 24=11000 and their sum is 10100=20, so a(12)=20. a(4) = 12 = + 8 + 4 -> - 8 + 4 = -4.
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27)
Links
- T. D. Noe, Table of n, a(n) for n = 0..1023
- P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
- H. D. Nguyen, A mixing of Prouhet-Thue-Morse sequences and Rademacher functions, 2014. See Example 20. - _N. J. A. Sloane_, May 24 2014
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
Crossrefs
Programs
-
Haskell
import Data.Bits (xor, shiftL) a048724 n = n `xor` shiftL n 1 :: Integer -- Reinhard Zumkeller, Mar 06 2013
-
Maple
a:= n-> Bits[Xor](n, n+n): seq(a(n), n=0..100); # Alois P. Heinz, Apr 06 2016
-
Mathematica
Table[ BitXor[2n, n], {n, 0, 65}] (* Robert G. Wilson v, Jul 06 2006 *)
-
PARI
a(n)=bitxor(n,2*n) \\ Charles R Greathouse IV, Jan 04 2013
-
Python
def A048724(n): return n^(n<<1) # Chai Wah Wu, Apr 05 2021
Formula
a(n) = Xmult(n, 3) (or n XOR (n<<1)).
a(n) = A065621(-n).
a(2n) = 2a(n), a(2n+1) = 2a(n) + 2(-1)^n + 1.
G.f. 1/(1-x) * sum(k>=0, 2^k*(3t-t^3)/(1+t)/(1+t^2), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) = sum(k=0, n, (1-(-1)^round(+n/2^k))/2*2^k). - Benoit Cloitre, Apr 27 2005
a(n) = A106409(2*n) for n>0. - Reinhard Zumkeller, May 02 2005
a(n) = A142149(2*n). - Reinhard Zumkeller, Jul 15 2008
Comments