A048744 Numbers k such that 2^k - k is prime.
2, 3, 9, 13, 19, 21, 55, 261, 3415, 4185, 7353, 12213, 44169, 60975, 61011, 108049, 182451, 228271, 481801, 500899, 505431, 1015321, 1061095
Offset: 1
Examples
2^55 - 55 = 36028797018963913 is prime, so 55 is a term.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 261, p. 70, Ellipses, Paris 2008.
Links
- Henri Lifchitz, Renaud Lifchitz, PRP Top Records. 2^n-n.
Programs
-
Mathematica
Do[ If[ PrimeQ[ 2^n - n ], Print[ n ] ], {n, 0, 7353} ] (* Second program: *) Select[Range[8000], PrimeQ[2^# - #] &] (* Michael De Vlieger, Nov 15 2017 *)
-
PARI
for(n=1,10^5,if(ispseudoprime(2^n-n),print1(n,", "))) \\ Derek Orr, Sep 01 2014
Extensions
261 and 3415 found by Warut Roonguthai
4185 and 7353 are probable primes (the latter was found by Jud McCranie).
12213 found by Robert G. Wilson v, Jan 02 2001
More terms from Henri Lifchitz contributed by Ray Chandler, Mar 02 2007
Edited by T. D. Noe, Oct 30 2008
a(22)-a(23) from Henri Lifchitz contributed by Robert Price, Sep 01 2014
Comments