cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048759 Longest perimeter of a Pythagorean triangle with n as length of one of the three sides.

Original entry on oeis.org

12, 12, 30, 24, 56, 40, 90, 60, 132, 84, 182, 112, 240, 144, 306, 180, 380, 220, 462, 264, 552, 312, 650, 364, 756, 420, 870, 480, 992, 544, 1122, 612, 1260, 684, 1406, 760, 1560, 840, 1722, 924, 1892, 1012, 2070, 1104, 2256, 1200, 2450, 1300, 2652
Offset: 3

Views

Author

Henry Bottomley, Jun 15 2000

Keywords

Crossrefs

Programs

  • Magma
    [(3*n^2+4*n-n^2*(-1)^n)/4: n in [3..60]]; // Vincenzo Librandi, Jul 19 2015
  • Mathematica
    A048759[n_] := (3 - (-1)^n)*n^2 / 4 + n; Array[A048759, 100, 3] (* or *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {12, 12, 30, 24, 56, 40}, 100] (* Paolo Xausa, Feb 29 2024 *)
  • PARI
    Vec(-2*x^3*(2*x^5+x^4-6*x^3-3*x^2+6*x+6)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 13 2014
    

Formula

a(n) = n*A029578(n+2) = n+A055523(n)+A055524(n).
a(2*k) = 2*k*(k+1), a(2*k+1) = 2*(2*k+1)*(k+1).
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). - Colin Barker, Sep 13 2014
G.f.: -2*x^3*(2*x^5+x^4-6*x^3-3*x^2+6*x+6) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 13 2014
a(n) = (3*n^2+4*n-n^2*(-1)^n)/4. - Luce ETIENNE, Jul 18 2015
E.g.f.: x*((4 + x)*cosh(x) + (3 + 2*x)*sinh(x) - 4*(1 + x))/2. - Stefano Spezia, May 24 2021