A048773 Partial sums of A048697.
1, 11, 32, 84, 209, 511, 1240, 3000, 7249, 17507, 42272, 102060, 246401, 594871, 1436152, 3467184, 8370529, 20208251, 48787040, 117782340, 284351729, 686485807, 1657323352, 4001132520, 9659588401, 23320309331, 56300207072, 135920723484, 328141654049
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Programs
-
Mathematica
Accumulate[LinearRecurrence[{2,1},{1,10},35]] (* Harvey P. Dale, Jul 26 2011 *) LinearRecurrence[{3, -1, -1},{1, 11, 32},29] (* Ray Chandler, Aug 03 2015 *)
Formula
a(n) = 2*a(n-1)+a(n-2)+9; a(0)=1, a(1)=11.
a(n) = (((10+(11/2)*sqrt(2))*(1+sqrt(2))^n - (10-(11/2)*sqrt(2))*(1-sqrt(2))^n)/ 2*sqrt(2))-9/2.
From R. J. Mathar, Nov 08 2012: (Start)
G.f.: ( 1+8*x ) / ( (x-1)*(x^2+2*x-1) ).
a(n) = 3*a(n-1)-a(n-2)-a(n-3). - Wesley Ivan Hurt, May 21 2021
Extensions
More terms from Harvey P. Dale, Jul 26 2011