cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048777 First partial sums of A005409; second partial sums of A001333.

Original entry on oeis.org

1, 5, 16, 44, 113, 281, 688, 1672, 4049, 9789, 23648, 57108, 137889, 332913, 803744, 1940432, 4684641, 11309749, 27304176, 65918140, 159140497, 384199177, 927538896, 2239277016, 5406092977, 13051463021, 31509019072, 76069501220, 183648021569, 443365544417
Offset: 0

Views

Author

Keywords

Comments

Form an array having the first column all 1's and the first row the squares 1, 4, 9, ..., so m(n,1) = 1 and m(1,n) = n^2 for n = 1, 2, 3, ..., and let the interior terms be m(i,j) = m(i,j-1) + m(i-1,j-1) + m(i-1,j). Then the sums of the terms in the antidiagonals are the terms of this sequence. - J. M. Bergot, Nov 16 2012
Define a triangle with T(n,n)=n+1 and T(n,0)=n*(n+1)+1 for n >= 0. Define the interior terms via T(r,c) = T(r-2,c-1) + T(r-1,c-1) + T(r-1,c). Then the row sums are a(n) = Sum_{k=0..n} T(n,k). - J. M. Bergot, Feb 27 2013

Crossrefs

Programs

  • Magma
    I:=[1,5,16,44]; [n le 4 select I[n] else 4*Self(n-1) -4*Self(n-2) +Self(n-4): n in [1..36]]; // G. C. Greubel, Apr 23 2021
    
  • Mathematica
    LinearRecurrence[{4,-4,0,1},{1,5,16,44},40] (* Harvey P. Dale, Nov 12 2017 *)
    Table[(LucasL[n+3, 2] -2*(2n+5))/4, {n,0,35}] (* G. C. Greubel, Apr 23 2021 *)
  • Sage
    [(lucas_number2(n+3,2,-1) -2*(2*n+5))/4 for n in (0..35)] # G. C. Greubel, Apr 23 2021

Formula

a(n) = 2*a(n-1) + a(n-2) + 2*n+1 with a(0)=1, a(1)=5.
a(n) = ( {(5+(7/2)*sqrt(2))*(1+sqrt(2))^n - (5-(7/2)*sqrt(2))*(1-sqrt(2))^n}/2*sqrt(2) ) - (2*n+5)/2.
a(n) = (1/2)*( Pell(n+3) + Pell(n+2) -2*n -5 ), with Pell(n) = A000129(n). - Ralf Stephan, May 15 2007
From Colin Barker, Sep 20 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
G.f.: (1+x)/((1-x)^2*(1-2*x-x^2)). (End)
a(n) = A048776(n-1) + A048776(n). - R. J. Mathar, Feb 28 2013
a(n) = (A002203(n+3) - 2*(2*n+5))/4. - G. C. Greubel, Apr 23 2021
E.g.f.: exp(x)*(7*cosh(sqrt(2)*x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 2*x - 5)/2. - Stefano Spezia, May 13 2023

Extensions

More terms from Harvey P. Dale, Nov 12 2017