A048777 First partial sums of A005409; second partial sums of A001333.
1, 5, 16, 44, 113, 281, 688, 1672, 4049, 9789, 23648, 57108, 137889, 332913, 803744, 1940432, 4684641, 11309749, 27304176, 65918140, 159140497, 384199177, 927538896, 2239277016, 5406092977, 13051463021, 31509019072, 76069501220, 183648021569, 443365544417
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,0,1).
Programs
-
Magma
I:=[1,5,16,44]; [n le 4 select I[n] else 4*Self(n-1) -4*Self(n-2) +Self(n-4): n in [1..36]]; // G. C. Greubel, Apr 23 2021
-
Mathematica
LinearRecurrence[{4,-4,0,1},{1,5,16,44},40] (* Harvey P. Dale, Nov 12 2017 *) Table[(LucasL[n+3, 2] -2*(2n+5))/4, {n,0,35}] (* G. C. Greubel, Apr 23 2021 *)
-
Sage
[(lucas_number2(n+3,2,-1) -2*(2*n+5))/4 for n in (0..35)] # G. C. Greubel, Apr 23 2021
Formula
a(n) = 2*a(n-1) + a(n-2) + 2*n+1 with a(0)=1, a(1)=5.
a(n) = ( {(5+(7/2)*sqrt(2))*(1+sqrt(2))^n - (5-(7/2)*sqrt(2))*(1-sqrt(2))^n}/2*sqrt(2) ) - (2*n+5)/2.
a(n) = (1/2)*( Pell(n+3) + Pell(n+2) -2*n -5 ), with Pell(n) = A000129(n). - Ralf Stephan, May 15 2007
From Colin Barker, Sep 20 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
G.f.: (1+x)/((1-x)^2*(1-2*x-x^2)). (End)
a(n) = (A002203(n+3) - 2*(2*n+5))/4. - G. C. Greubel, Apr 23 2021
E.g.f.: exp(x)*(7*cosh(sqrt(2)*x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 2*x - 5)/2. - Stefano Spezia, May 13 2023
Extensions
More terms from Harvey P. Dale, Nov 12 2017
Comments