cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048803 a(n) = Product_{k=1..n} rad(k), where rad(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 9979200, 129729600, 1816214400, 27243216000, 54486432000, 926269344000, 5557616064000, 105594705216000, 1055947052160000, 22174888095360000, 487847538097920000, 11220493376252160000, 67322960257512960000
Offset: 0

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Comments

Squarefree factorials: a(1) = 1, a(n+1) = a(n)* largest squarefree divisor of (n+1). - Amarnath Murthy, Nov 28 2004
LCM over all partitions of n of the product of the part sizes in the partition. - Franklin T. Adams-Watters, May 04 2010
a(n) is the product of the lcm of the set of prime factors of k over the range k = 1..n. - Peter Luschny, Jun 10 2011
a(n) is a divisor of n! and n!/a(n) = A085056(n). - Robert FERREOL, Aug 09 2021
In consequence of the definition, pseudo-binomial coefficients a(m+n)/(a(m)*a(n)) are natural numbers for all whole numbers m and n, and this is the minimal increasing sequence (for n >= 1) with that property. In consequence of the comment of Adams-Watters, the corresponding pseudo-multinomial coefficients are natural numbers as well. - Hal M. Switkay, May 26 2024

References

  • Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued Polynomials, AMS, Providence, RI, 1997. Math. Rev. 98a:13002. See p. 246.

Crossrefs

Partial products of A007947.

Programs

  • Haskell
    a048803 n = a048803_list !! n
    a048803_list = scanl (*) 1 a007947_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Maple
    A048803 := proc(n) local i; mul(ilcm(op(numtheory[factorset](i))), i=1..n) end; seq(A048803(i),i=0..22); # Peter Luschny, Jun 10 2011
    a := n -> mul(NumberTheory:-Radical(i), i=1..n): # Peter Luschny, Mar 14 2022
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n-1] First @ Select[Reverse @ Divisors[n], SquareFreeQ, 1]; Array[a,22,0] (* Jean-François Alcover, May 04 2011 *)
    A048803[n_] := Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
    Table[A048803[n], {n, 0, 24}]  (* Peter Luschny, Aug 18 2025 *)
  • PARI
    a(n)=local(f); f=n>=0; if(n>1, forprime(p=2,n,f*=p^(n\p))); f
    
  • SageMath
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        return radical(n) * a_rec(n - 1)
    print([a_rec(n) for n in range(23)]) # Peter Luschny, Dec 12 2023

Formula

a(0) = 1, a(1) = 1; for n > 1, a(n) = lcm( 1, 2, ..., n, a(1)*a(n-1), a(2)*a(n-2), ..., a(n-1)*a(1) ). [Original name.]
a(n) = Product_{p prime} p^floor(n/p). See Farhi link p. 16. - Michel Marcus, Oct 18 2018
For n >=1, a(n) = lcm(1^floor(n/1),2^floor(n/2),...,n^floor(n/n)). - Robert FERREOL, Aug 05 2021
Rephrasing Murthy's comment: a(n) = a(n-1) * A007947(n). - Hal M. Switkay, Dec 31 2024

Extensions

Entry improved by comments from Michael Somos, Nov 24 2001
New name based on a comment of Amarnath Murthy by Peter Luschny, Aug 18 2025