A048803 a(n) = Product_{k=1..n} rad(k), where rad(n) is the product of distinct prime factors of n, cf. A007947.
1, 1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 9979200, 129729600, 1816214400, 27243216000, 54486432000, 926269344000, 5557616064000, 105594705216000, 1055947052160000, 22174888095360000, 487847538097920000, 11220493376252160000, 67322960257512960000
Offset: 0
References
- Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued Polynomials, AMS, Providence, RI, 1997. Math. Rev. 98a:13002. See p. 246.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See rho_n p. 3.
- Bakir Farhi, On the derivatives of the integer-valued polynomials, arXiv:1810.07560 [math.NT], 2018.
- Index entries for sequences related to lcm's
Crossrefs
Partial products of A007947.
Programs
-
Haskell
a048803 n = a048803_list !! n a048803_list = scanl (*) 1 a007947_list -- Reinhard Zumkeller, Jul 01 2013
-
Maple
A048803 := proc(n) local i; mul(ilcm(op(numtheory[factorset](i))), i=1..n) end; seq(A048803(i),i=0..22); # Peter Luschny, Jun 10 2011 a := n -> mul(NumberTheory:-Radical(i), i=1..n): # Peter Luschny, Mar 14 2022
-
Mathematica
a[0] = 1; a[n_] := a[n] = a[n-1] First @ Select[Reverse @ Divisors[n], SquareFreeQ, 1]; Array[a,22,0] (* Jean-François Alcover, May 04 2011 *) A048803[n_] := Times @@ ResourceFunction["IntegerRadical"][Range[1, n]]; Table[A048803[n], {n, 0, 24}] (* Peter Luschny, Aug 18 2025 *)
-
PARI
a(n)=local(f); f=n>=0; if(n>1, forprime(p=2,n,f*=p^(n\p))); f
-
SageMath
from functools import cache @cache def a_rec(n): if n == 0: return 1 return radical(n) * a_rec(n - 1) print([a_rec(n) for n in range(23)]) # Peter Luschny, Dec 12 2023
Formula
a(0) = 1, a(1) = 1; for n > 1, a(n) = lcm( 1, 2, ..., n, a(1)*a(n-1), a(2)*a(n-2), ..., a(n-1)*a(1) ). [Original name.]
a(n) = Product_{p prime} p^floor(n/p). See Farhi link p. 16. - Michel Marcus, Oct 18 2018
For n >=1, a(n) = lcm(1^floor(n/1),2^floor(n/2),...,n^floor(n/n)). - Robert FERREOL, Aug 05 2021
Rephrasing Murthy's comment: a(n) = a(n-1) * A007947(n). - Hal M. Switkay, Dec 31 2024
Extensions
Entry improved by comments from Michael Somos, Nov 24 2001
New name based on a comment of Amarnath Murthy by Peter Luschny, Aug 18 2025
Comments