cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048876 a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 29, 123, 521, 2207, 9349, 39603, 167761, 710647, 3010349, 12752043, 54018521, 228826127, 969323029, 4106118243, 17393796001, 73681302247, 312119004989, 1322157322203, 5600748293801, 23725150497407, 100501350283429, 425730551631123, 1803423556807921
Offset: 0

Views

Author

Keywords

Comments

Generalized Pell equation with second term of 7.

Crossrefs

Programs

  • Maple
    with(combinat): a:=n->3*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    f[n_] := Block[{s = Sqrt@ 5}, Simplify[((1 + s)(2 + s)^n + (1 - s)(2 - s)^n)/2]]; (* Or *)
    f[n_] := Fibonacci[3 n + 3] - Fibonacci[3 n - 1]; (* Or *)
    f[n_] := Mod[ Fibonacci[3n + 7], Fibonacci[3n + 3]]; Array[f, 22, 0]
    a[n_] := 4a[n - 1] + a[n - 2]; a[0] = 1; a[1] = 7; Array[a, 22, 0] (* Or *)
    CoefficientList[ Series[(1 + 3x)/(1 - 4x - x^2), {x, 0, 21}], x] (* Robert G. Wilson v *)
    LinearRecurrence[{4,1},{1,7},30] (* Harvey P. Dale, Jun 13 2015 *)
    Table[LucasL[3*n + 1], {n, 0, 20}] (* Rigoberto Florez, Apr 04 2019 *)
  • PARI
    Vec((1+3*x)/(1-4*x-x^2) + O(x^30)) \\ Altug Alkan, Oct 07 2015

Formula

G.f.: (1+3*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = ((1+sqrt(5))*(2+sqrt(5))^n + (1-sqrt(5))*(2-sqrt(5))^n )/2.
a(n) = A000032(3*n+1). - Thomas Baruchel, Nov 26 2003
From Gary Detlefs, Mar 06 2011: (Start)
a(n) = Fibonacci(3*n+7) mod Fibonacci(3*n+3), n > 0.
a(n) = Fibonacci(3*n+3) - Fibonacci(3*n-1). (End)
a(n) = A001076(n+1)+3*A001076(n). - R. J. Mathar, Oct 22 2013
a(n) = 5*F(2*n)*F(n+1) - L(n-1)*(-1)^n. - J. M. Bergot, Mar 22 2016
a(n) = Sum_{k=0..n} binomial(n,k)*5^floor((k+1)/2)*2^(n-k). - Tony Foster III, Sep 03 2017